Лекция 10. РАВНОМЕРНАЯ НЕПРЕРЫВНОСТЬ ФУНКЦИИ

- 1. Определение равномерной непрерывности функции.
- 2. Теорема Кантора.

1. Определение равномерной непрерывности функции.

Из множества функций, непрерывных на числовом промежутке, выделяют равномерно-непрерывные функции.

Пусть f(x) — функция, непрерывная на некотором промежутке $X \in \mathbf{R}$ и точка $x_0 \in X$. В силу определения непрерывности функции $\varepsilon > 0$ найдется $\delta(\varepsilon) > 0$ такое, что для любых $x \in X$, удовлетворяющих условию $|x-x_0| < \delta$, выполняется неравенство $|f(x)-f(x_0)| < \varepsilon$. В общем случае число δ зависит от ε и x_0 . При изменении x_0 в пределах рассматриваемого промежутка при постоянном ε число δ различно для разных x_0 . Чем круче идет график функции f(x) в окрестности $U(\delta;x_0)$, тем меньше δ , соответствующее данной точке x_0 (рис.1).

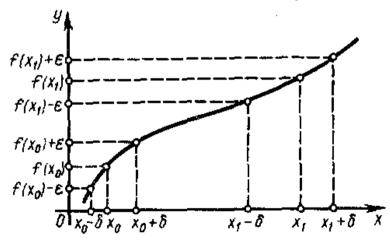


Рис.1.

При заданном ε каждой точке $x \in X$ соответствует некоторое число $\delta > 0$. Возникает вопрос: существуют ли непрерывные функции, определенные на некоторых промежутках, для которых по любому $\varepsilon > 0$ находилось бы $\delta > 0$, не зависящее от x, т.е. оно является общим для всех $x \in X$?

Определение 1. Функция f(x) называется равномернонепрерывной на множестве $X \subseteq \mathbf{R}$, если для любого $\varepsilon > 0$ найдется $\delta(\varepsilon) > 0$, такое, что для любых двух точек x_1 , $x_2 \in X$, удовлетворяющих условию $|x_1 - x_2| < \delta$, выполняется неравенство $|f(x_1) - f(x_2)| < \varepsilon$.

Символическая запись:

f(x) равномерно-непрерывна в точке $x_0 \Leftrightarrow$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x_1, x_2 \in X \ |x_2 - x_1| < \delta \ |f(x_2) - f(x_1)| < \varepsilon.$$

По определению 1 δ зависит только от ε и является общим для всех x_1 , $x_2 \in X$.

Очевидно, что равномерно-непрерывная функция f(x) на промежутке X является непрерывной на X. Чтобы в этом убедиться, достаточно положить $x_1=x$, $x_2=x_0$. Тогда из определения равномерной непрерывности функции следует определение непрерывной функции в точке x_0 .

Обратное утверждение не всегда справедливо. Условие, при котором непрерывная функция является и равномернонепрерывной, определяется теоремой Кантора о равномерной непрерывности.

Геометрическая иллюстрация равномерной непрерывности функции. Если f(x) равномерно-непрерывна на X, то $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ такое, что прямоугольник со сторонами $\delta(\varepsilon)$ и ε , параллельными осям Ox и Oy, можно переместить вдоль графика (сохраняя параллельность сторон осям координат), что график не пересечет горизонтальных сторон прямоугольника, а будет пересекать только вертикальные стороны (рис.2).

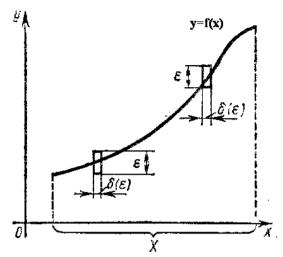


Рис.2.

2. Теорема Кантора.

Теорема 1 (Кантора). Функция f(x), непрерывная на отрезке [a;b], равномерно-непрерывна на этом отрезке.

▶ Шаг 1. Докажем, что если функция $f(x) \in C_{[a;b]}$, то $\forall \varepsilon > 0$ отрезок [a;b] можно разбить на конечное число отрезков, любые два из которых или не имеют общих точек, или имеют одну общую граничную точку и на каждом из которых $\forall x_1, x_2$ выполняется неравенство $|f(x_2) - f(x_1)| < \varepsilon$.

Предположим обратное. Пусть существует $\varepsilon > 0$, для которого такое разбиение невозможно. Разделим [a;b] пополам и выберем из полученных отрезков тот, для которого такое разбиение невозможно. Обозначим его $[a_1;b_1]$. Разделим отрезок $[a_1;b_1]$ пополам и выберем из полученных отрезков тот, для которого такое разбиение невозможно. И так далее. Продолжая этот процесс неограниченно, получим последовательность вложенных отрезков

$$[a;b]\supset [a_1;b_1]\supset ...\supset [a_n;b_n]\supset ...,$$

обладающих тем свойством, что ни один из них нельзя разбить на конечное число отрезков, на каждом из которых $\forall x_1, x_2$ выполняется неравенство $|f(x_2) - f(x_1)| < \varepsilon$.

По теореме о вложенных отрезках существует точка ξ , принадлежащая всем отрезкам. В силу непрерывности функции f(x) в точке ξ , имеем

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in U(\delta; \xi) \ |f(x) - f(\xi)| < \frac{\varepsilon}{2}.$$

Тогда $\forall x_1, x_2 \in U(\mathcal{S}; \xi)$ выполняется неравенство $|f(x_2) - f(x_1)| = |f(x_2) - f(\xi) + f(\xi) - f(x_1)| \le$ $\leq |f(x_2) - f(\xi)| + |f(x_1) - f(\xi)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \ .$

В окрестность $U(\delta;\xi)$ при достаточно большом n попадает отрезок $[a_n;b_n]$. Следовательно, $\forall x_1,x_2\in [a_n;b_n]$ выполняется $|f(x_2)-f(x_1)|<\varepsilon$. Это противоречит выбору последовательности отрезков $([a_n;b_n])_{n=1}^\infty$.

Шаг 2. Докажем равномерную непрерывность функции f(x).

Согласно шагу 1 для любого $\varepsilon > 0$ существует разбиение [a;b] на конечное число отрезков , в каждом из которых

$$\forall x_1,x_2 \in [a_k;b_k], \ k=1,2,...,n$$
 , выполняется $\left|f(x_2)-f(x_1)\right| < \frac{\varepsilon}{2}$.

Обозначим $\delta = \min_{1 \le k \le n} (b_n - a_n)$.

Рассмотрим две любые две точки $x_1, x_2 \in [a;b]$ такие, что $\left|x_2 - x_1\right| < \delta \ .$

Если
$$x_1, x_2 \in [a_n; b_n]$$
, то имеем $|f(x_2) - f(x_1)| < \frac{\varepsilon}{2}$.

Если x_1 и x_2 двум соседним отрезкам разбиения, то получим:

$$|f(x_2)-f(x_1)| = |f(x_2)-f(x_0)+f(x_0)-f(x_1)| \le$$

$$\leq |f(x_2) - f(x_0)| + |f(x_0) - f(x_1)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

где x_0 – общая граничная точка соседних отрезков. \blacktriangleleft

Следствие. Пусть функция f(x) непрерывна на отрезке [a;b]. Тогда для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что если [a;b] разбить произвольным образом на конечное число отрезков с длинами меньше δ , то на каждом из них колебание ω функции f(x) будет меньше ε .

Без доказательства.

Замечание. Теорема не верна, если отрезок заменить интервалом.

Пример. Исследовать на равномерную непрерывность функцию $y = x^2$ на ${\bf R}$.

Решение. Докажем, что функция не является равномерно непрерывной пользуясь определением равномерной непрерывности. Построим отрицание определения равномерной непрерывности:

$$\exists \varepsilon_0 > 0: \forall \delta > 0 \ \exists x_1, x_2 \in \mathbf{R} \ |x_2 - x_1| < \delta$$
$$|f(x_2) - f(x_1)| \ge \varepsilon_0.$$

Возьмем $\varepsilon_0 = 1$ и $\forall \delta > 0$ положим

$$x_1 = \frac{1}{\delta} + \frac{\delta}{2}, \qquad x_2 = \frac{1}{\delta}.$$

Тогда

$$\left|x_2 - x_1\right| = \left|\frac{1}{\delta} + \frac{\delta}{2} - \frac{1}{\delta}\right| = \frac{\delta}{2} < \delta$$
.

При этом

$$|f(x_2) - f(x_1)| = |x_1^2 - x_2^2| = |x_1 - x_2| \cdot |x_1 + x_2| =$$

$$= \frac{\delta}{2} \cdot \left(\frac{2}{\delta} + \frac{\delta}{2}\right) = 1 + \frac{\delta^2}{4} \ge 1 = \varepsilon_0.$$

Это доказывает, что функция $y = x^2$ не является равномернонепрерывной на ${\bf R}$. Однако, данная функция непрерывна на ${\bf R}$.

Вопросы для самоконтроля

- 1. Какие функции называются равномерно-непрерывными? Приведите примеры равномерно-непрерывных функций.
 - 2. Сформулируйте и докажите теорему Кантора.

ЛИТЕРАТУРА

- 1. Герасимович А.И. Математический анализ: Справочное пособие. В 2 ч.Ч.1., 2. Мн.: Выш.шк., 1989.
- 2. Зверович Э.И. Вещественный и комплексный анализ: Учебное пособие: В 6 ч. Ч.1.: Введение в анализ и дифференциальное исчисление. Мн.: БГУ, 2003.
- 3. Зорич В.А Математический анализ. Ч.1, ч.2. М.: Наука, 1981, 1984.
- 4. Ильин В.А., Садовничий В.А., Сендов Бл.Х. Математический анализ. М.:Наука, 1985.
- 5. Кудрявцев. Л.Д. Краткий курс математического анализа: Учебник для вузов. М.: Наука. Гл. ред. физ.-мат. лит., 1989. 736 с
- 6. Математический анализ в вопросах и задачах: учебн. Пособие для вузов / Под ред. Бутузова. М.: Высш. шк., 1984. 200с.
- 7. Никольский С.М. Курс математического анализа. Т.1, т.2. М.: Наука, 1990, 1991.
- 8. Привалов И.И. Введение в теорию функций комплексного переменного. М.: Наука, 1977.
- 9. Тер-Крикоров А.М., Шабунин М.И. Курс математического анализа: Учеб. пособ. для вузов. М.: Наука. Гл. ред. физ.мат. лит., 1988. 816 с.