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ABSTRACT 

Outcomes of an Integrated Approach to Speed and Strength Training with an Elite-Level 
Sprinter 

 
by 
 

Eric D. Magrum  
 

The purpose of this study was to observe changes in sprint velocity, ground contact time, and 

peak force demonstrated by a competitive sprinter following an integrated approach to speed 

development and strength training. As part of an ongoing monitoring procedure the participant 

completed 20m sprint testing through an optical measurement system and isometric-strength 

testing before and after each phase of training. Sprint velocity, ground contact time and peak 

force were analysed using Tau-U, smallest worthwhile and percent change statistics. Results 

indicate sprinting velocity statistically improved while changes in peak force were practically 

significant and ground contact time remained trivial throughout the investigation. Results lead 

investigators to suggest the implementation of a periodized approach merging technical skill and 

the development of physical abilities. The integrated approach provided a transfer of training 

effect and may have been the primary source of sprint enrichment. 
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CHAPTER 1 

INTRODUCTION 

Coaches and practitioners around the world seek to gain insights on how to strategize, 

structure, and devise training programs to enhance sprint speed. Sprinting is arguably the most 

sought after ability in sport. (Bellon, 2016; Morin, Edoudard, & Samozino, 2011; Nagahara, 

2014; Rumpf, 2014). Sprinting can be defined as an un-paced bi-pedal cyclical movement, 

executed at maximal intensity, and commonly lasting 15 seconds or less. (Ross, Leveritt, & Riek, 

2001).  Despite the time constraint within this strict definition, the maximal intensity associated 

with longer events like the 200 and 400 m races solidify their classification as sprint events.  

Furthermore, texts tend to label the 60 second mark as the threshold for an even split between 

aerobic and anaerobic contributions to maximal sustained efforts (Stone, Sands, & Stone, 2007). 

Interestingly enough, evidence leads investigators to believe sprinting speed in humans is largely 

independent of aerobic contributions under 60 seconds (Weyand et al., 1999). This would create 

a situation where sprinting activities completed under 60 seconds should be considered sprinting 

events.  

In direct pursuits of speed, which determine the winner as the athlete covering a 

respective distance in the shortest amount of time, it is evident that sprinting ability is strongly 

related to an athletes maximal achievable running velocity. Although the athlete who attains the 

highest sprint velocity does not always attain the highest sprint performance (Bruggeman & Glad, 

1990; Mac'kala, 2007; Mann, 2013; Volkov & Lapin, 1979). The author will differentiate sprint 

speed/performance from maximal velocity, as running speed/performance references a best time 

over a defined distance and maximal velocity refers to the highest instantaneous velocity an 

athlete achieves. Attaining this maximal velocity is heavily dependent upon many factors 
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including: ability to produce large amounts of mass specific force (Delecluse, 1997; Seitz, Reyes, 

Tran, Villarreal, & Haff, 2014; Weyand, 2000), ability to produce force rapidly (Clark & 

Weyand, 2014), ability to control movement at high velocities (Missitzi, Geladas, & Klissouras, 

2004), inter-muscular coordination (Coh, Zvan, Velickovska, Zivkovic, & Gontarev, 2016), 

technical ability (Morin et al., 2011; Rabita et al., 2015), and most notably, genetics (Eynon et al., 

2013; Lucia, Moran, Zihong, & Ruiz, 2010; MacArthur & North, 2004; Scott et al., 2009; Wang 

et al., 2013). 

 In the aforementioned direct pursuits of speed, the individual athlete’s ability to 

positively change velocity or accelerate, has been designated a seminal factor on maximal 

sprinting speed and accordingly overall sprinting performance (Johnson & Buckley, 2001; Mann, 

2013; Maulder, Bradshaw, & Keogh, 2008; Sleivert & Taingahue, 2004; Tellez & Doolittle, 

1984; Yu et al., 2015). Dictated by the event itself, athletes should achieve the highest horizontal 

velocity possible in the smallest timeframe. Further, the ability to produce force and velocity 

then become foundational pieces from which an athlete’s ability to accelerate begin.  

With the objective of enriching sprint performance it becomes logical to investigate elite-

level athletes displaying superior physical aptitudes (Coh & Tamazin, 2006; Rabita et al., 2015; 

Slawinski et al., 2010). Elite-level subjects are the standard to which others strive. Investigators 

should use the information gathered from elite athletes to enhance training in a manner, which 

may allow aspiring athletes to progress toward an elite-level or a higher relative level.  

While considering the significance of subjects and their physical abilities, it is vital to 

grasp the technical demands of sprinting and appreciate sprinting as not solely a physical 

capacity but as a fundamental skill based on coordination and precision (Debaere, Jonkers, & 
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Delecluse, 2013; Morin et al., 2011; Rabita et al., 2015). The technical essence of sprinting 

encompasses many facets including force application characteristics, biomechanical concerns, 

and motor learning aspects (Francis, 1992; Mero, Komi, & Gregor, 1992; Morin et al. 2011). 

There is no doubt technical aspects in sprinting performance serve a crucial role. Athletes’ 

technical abilities allow for the modulation of their genetically bestowed and developed physical 

abilities. Therefore, a coach who outlines a training plan elevating the physiological state of the 

athlete, serves to deliver greater physical abilities with which the athlete can regulate technical 

prowess.  

The interplay of technical and physical abilities described above affords practitioners 

many different means to improve sprinting ability. In a recent review Rumpf, Lockie, Cronin and 

Jalilvand (2016) demonstrated a variety of training stimuli including traditional sprint training, 

resisted sprint training, plyometric training, and resistance training or a combination of these 

training means, whether directly or indirectly, can reinforce sprinting performance. Many of 

these strategies have been used effectively to augment sprinting speed in an array of athletes, 

however, it has not been well-documented how a coach might merge these entities into a unified 

approach with elite-level sprinters. 

Currently, a paucity of literature exists on how elite-level performers merge training 

disciplines into a uniform strategy with the ultimate goal of of advancing sprinting speed (Bolger, 

Lyons, Harrison, & Kenny, 2015). Therefore, the primary purpose of this inquiry is to to observe 

changes in sprint velocity, ground contact time, and peak force in an elite-level sprinter 

following an integrated approach to speed development and strength training.  
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CHAPTER 2  

COMPREHENSIVE REVIEW OF THE LITERATURE 

Significance of Sprint Speed  

Arguably the most captivating ten seconds in sport, the 100m final at the Olympic games 

all comes down to an ability to sprint very fast. With the sizeable interest, sprinting speed is of 

vital importance for Track & Field (T&F) athletes of many disciplines and has been the topic for 

many research endeavors. Some of these investigations contend sprinting speed is the most 

admired ability in sport and the focus of many training programs (Morin et al., 2011). Many of 

the inter-disciplines comprising T&F have a distinct goal; to cover a predetermined distance in a 

shorter timeframe than your opponent. With this very simple goal, it becomes increasingly clear 

why sprinting speed would be desirable for T&F athletes. Broadening the importance of 

sprinting speed, a great deal of evidence suggests sprinting speed is not only important in the 

sport of Track & Field, but is similarly highly advantageous in field/team sport athletes (Bellon 

et al., 2016). The evidence laid out hereafter should clearly be taken into account for sprinters of 

all ages, but should also be considered for team sport athletes, as there is a high degree of 

crossover.  

Importance of Investigating Elite Level Subjects 

While observing the kinematics and kinetic parameters of maximal velocity sprint 

running, Deborah Sides (2014) analyzes subject’s prominence as many previous research 

endeavors have investigated sub-maximal running speeds. With the results of the 2016 Olympic 

100 m final decided by less than 0.10 seconds, investigators must appreciate how a seemingly 

meaningless adjustment or enhancement can make the difference between a podium appearance 

and being omitted from the final. Enhancements will only take place as a result of the 
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observation and investigation of high-level sprinters and their inherent and/or developed physical 

and technical abilities. 

 Many authors have previously demonstrated the importance of examining high-level 

sprinters (Clark & Weyand, 2014; Coh & Tamazin, 2006; Morin et al., 2012; Rabita et al., 2015; 

Slawinski et al., 2010;). However, literature regarding elite-level sprinting is not readily available, 

it is logical to assume obtaining information on the integration of complimentary training means 

in elite sprint-athletes is exceptionally challenging. The information collected, analyzed and 

returned will aid coaches and athletes in the pursuit of superior sprint performances; however, 

the study of slower speed running will provide no such benefit.  

Physics of Sprinting 

In order to better understand and comprehend sprinting performance the author will 

outline general knowledge of natural sprinting motion applied while observing and attempting to 

enhance sprinting. Hereafter this will be referred to as the physics of sprinting. This will give the 

reader a better understanding of the way in which sprinting is viewed by the author, and will lay 

the foundation for the succeeding sections. 

Isaac Newton produced three laws of motion. The first states every object remains in its 

current state of motion (rest or motion) unless acted upon by an external force. The second is 

derived mathematically as force= mass x acceleration. The last law states for every action there 

is an equal and opposite reaction. These laws will aid coaches and investigators in the study of 

sprinting. Along with these laws there are certainties when it comes to the physics of sprinting. 

The first of these certainties is that gravity is unalterable and sprinters must produce enough 

vertical force, in relation to the ground, to refrain from falling (Mann, 2013). The second 
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certainty is the fact that a sprinter’s body mass remains relatively unchanged throughout the 

duration of a sprint.  

Newton’s laws of motion and two accepted beliefs above give the practitioner guidance 

as to what then is important for sprinting performance. Applying the second law of motion to 

sprinting, assuming a sprinter’s mass remains constant; therefore, the force a sprinter produces is 

directly proportional to the athlete’s ability to accelerate. If we recall, the ability to produce force 

is a physical ability termed strength (Stone et al., 2006). Force is a vector quantity comprised of 

both a magnitude and direction of application. In addition to a magnitude of application from 0-

100% and direction of application, the athlete also applies force at a rate or degree of speed 

(Stone et al., 2003). The aforementioned magnitude, direction and rate of force production are 

the physical abilities underscoring an athlete’s capacity to overcome gravity and begin to explain 

the qualities practitioners may focus on for further improvements. 

Magnitude of Force Application 

Numerous investigations have discussed the importance of strength or magnitude of force 

on athletic performance (Cronin & Hansen, 2005; De Villarreal, Requena, Izquierdo, & 

Gonzalez-Badillo, 2013; Penailillo, Espildora, Jannas-Vela, Mujika, & Zbinden-Foneca, 2016; 

Seitz et al., 2014; Suchomel, Comfort, & Stone, 2015) and sprinting performance specifically 

(Bolger et al., 2015; Bret, Rahmani, Dufour, Messonier, & Lacour, 2002; Delecluse, 1997; Moir, 

Sanders, Button, & Glaister, 2007; Young, McLean, & Ardagna, 1995). Further, there is 

evidence to suggest magnitude of force application separates performance level among sprinters 

(Ae, Ito, & Suzuki, 1992; Slawinski et al., 2015).  
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Slawinski et al. (2015) highlighted anthropometric dissimilarities between women and 

men postulating a resultant inferior capability to produce large forward acceleration due to these 

distinctions. Inferior ability to produce forward acceleration leading to shorter acceleration 

phases was shown to have detrimental effects on maximal velocity and ability to resist speed 

decay. These findings highlight the differences in gender but should also be considered when 

examining the differences within genders. There is little question the ability to produce force 

underpins and is a pre-requisite for human locomotion and sporting performance.  

Direction of Force Application 

Hunter, Marshall, and McNair (2005) illuminate three external forces acting on a 

sprinter’s center of mass while sprinting. The three external forces acting on it are: wind 

resistance, ground reaction force (GRF), and gravity being chief among them. While gravity is 

constant and unalterable and wind presents differing characteristics in every situation, the 

sprinter is only left with the ability to alter ground reaction forces. This detail directs coaches and 

investigators to focus on the forces applied to the ground, the timeframe available to produce 

force, and in accordance with Newton’s third law, the direction in which they are applied.  

Ralph Mann provides a theoretical framework to view sprinting and alludes to a force-

reserve concept vital to enhancing sprinting performance (2013). Conceptually, this rationale 

indicates that vertical GRF’s required in the sprint are constant and must be met in order for the 

sprinter to stay in sprinting position, therefore, by increasing the amount of total force applied, 

the athlete may allocate a greater absolute (newtons) and greater relative amount (%) of force in 

the horizontal direction, resulting in greater horizontal velocity. Dr. Mann looks to harmonize the 

vertical and horizontal force components in an applied approach. 
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In applauding fashion, Clark and Weyand (2015) highlight the importance of a study by 

Rabita and colleagues (2015) as the first endeavor to acquire ground reaction force data from 

multiple-sequential steps and do so with high-level subjects, expanding the literature on elite 

level acceleration characteristics. Rabita et al. (2015) suggest the effectiveness of force 

application in the horizontal direction is more essential to improve overall sprint performance 

than very high levels of resultant GRF, which accounted for the difference between highly 

trained sprinters.  

In response, Clark and Weyand call attention to GRF data in relation to body mass for the 

elite participants in the Rabita et al. (2015) investigation (+20%), which allowed them to exit the 

blocks with greater velocity (+ 0.44 m/s) compared to sub-elite counterparts. This difference 

accounted for a great portion of the between group velocities for the entire 40m. This suggests 

integrated approaches should be installed which serve to optimize mechanics, mass-specific 

force production and force application as each of these is inter-related and occur as a result of 

forces produced during each stance phase. Additionally, Clark and Weyand encourage 

investigators and practitioners to observe forces as integrated components, as athletes and their 

respective limbs have no recollection of direction. As such, athletes merely push in accordance 

with alignment and position of the limb and its musculature, irrespective of direction.  

The issue of vertical compared to horizontal, sometimes referred to as anteroposterior 

ground reaction forces has been of particular interest in the past few years. There have been 

several studies backing both points of view and labeling the other as inferior in its importance. 

As it pertains to the athlete and the athlete’s body, it matters not. The true matter of importance 

coaches and investigators should focus on comes from structuring training in a manner which 
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teaches the athlete to achieve body positions allowing for the proper orientation of force 

application to displace the body’s center of mass. 

Rate of Force Production 

Power outputs are perhaps the most important physical characteristics determining 

sporting success (Stone, Moir, Glaister, & Sanders, 2002). As such, there has been additional 

investigation into the interconnection between power outputs and the rate at which force is 

produced (Taber, Bellon, Abbott, & Bingham, 2016). On a conceptual basis, the rate at which 

force is produced underscores power outputs and may be just as, if not more, important than 

power outputs determining sporting success (Taber et al., 2016).  

From the conceptual framework laid above, the rate at which force is produced underlies 

the ability to move very fast and can determine sporting success in sprinting. While observing 

starting block performance of elite and sub-elite level sprinters Slawinski et al. (2010) found 

RFD to be significantly greater in the elite level sprinters. Clark and Weyand, (2014) highlight 

the ability of top level sprinters to produce higher forces in the first half of an already very brief 

stance phase when compared to lower level sprinters at top speed. Thus it can be concluded that 

RFD is highly important for sprinting success.  

Understanding the inter-dependence between and among the ability to produce force 

(strength), the rate at which force is developed (RFD), and the direction which force is applied is 

crucial. The physical capacity to produce force underscores the ability to produce high rates of 

force development, allowing athletes to displace body segments, position limbs, and display 

desirable mechanics permitting enhanced force application and greater horizontal displacement 

of the center of mass. 
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Technical Aspects of Sprinting 

Skill can be considered the manner of performing a technique of a physical exercise 

(Bompa & Haff, 2009). Many sporting events have a technical model or standard which is 

accepted as being perfect, or as close as possible to perfect, and represents the accepted model of 

performance (Caine & Broekhoff, 1987). Skill level is the degree to which technique is achieved.  

The more biomechanically sound the skill level is, the more efficient or economical the athlete 

will be. In order to successfully execute sporting skill, specific motor components composing the 

sport technique must be learned. Coker (2013) defines a motor skill as an act or task meeting 

four criteria: 1) it is performed in order to achieve some objective 2) body and/or limb 

movements are required 3) movements are voluntary, and 4) developed as a result of practice or 

experience and must be learned. Learning can then be established as a critical element of sport 

and is defined as a relatively permanent change in a person’s capability to execute a motor skill 

as a result of practice or experience (Coker, 2013). Therefore, a coach is more accurately a 

teacher of sporting skills, and athletes’ learning depends on the series of experiences a coach 

constructs and the quality with which instruction is given.  

Furthermore, athletes’ underlying physical abilities dictate, to a large degree, the extent to 

which learners can potentially develop proficiency in particular motor components (Bompa & 

Haff, 2009; Coker, 2013; Young, 2009). Understanding the interdependence of technical and 

physical capacities will aid practitioners in their ability to devise training plans to augment 

technical prowess (Young, 2009). Dr. Michael H. Stone (2015) provides additional insight into 

the interdependent nature of physical abilities, motor control, technique and skill during graduate 

coursework. Motor control and strength are integrated functions of the same construct; technique 

results from applying force in appropriate directions, magnitudes and sequences. Skill is the way 
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movement is optimally performed in accordance with the technical model created for the sport; 

how well an athlete performs this technique is the skill level.  

Understanding the kinetic parameters generating performance and the biological systems 

that govern these performances establishes a base level of knowledge deemed helpful for 

understanding the succeeding sections.  

Phases of Sprinting Performance 

Within the sport of Track and Field (T&F) sprinting events are decided by very small 

margins. To chase the limits of human locomotion, coaches and investigators must inspect all 

facets of the sprint event. The inspection process begins with block clearance and is comprised of 

the time it takes for the athlete to exit the blocks and complete the first two steps of the race 

(Mann, 2013). Examination will evolve into the acceleration phase and ultimately graduate 

towards maximal velocity sprinting and deceleration from maximal velocity. 

Sprint Start 

Many previous studies have detailed the importance of the sprint start citing position of 

limbs, angles of joints, force production, rate of force production, orientation of force application, 

angular velocities, horizontal power, and horizontal velocity as measures of sprint starting 

success (Brazil et al., 2015; Harland & Steele, 1997; Maulder et al., 2006; Maulder, Bradshaw, & 

Keogh, 2008; Mero, Luhtanen, & Komi, 1983; Mero et al., 1992; Milanese, Bertucco, & 

Zancanaro, 2014; Rabita et al., 2015; Salo, Gayen, Patterson, & Wilson, 2016; Slawinski et al., 

2010; Tellez & Doolittle, 1984). Many of the aforementioned characteristics are kinematic 

concerns and are a result of kinetic characteristics displayed by the athlete. Due to this fact, the 

author will primarily focus on the kinetic characteristics underpinning these kinematic concerns.  
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Set Position 

Sprints coach Tom Tellez, the coach of 10-time Olympic medalist Carl Lewis and 

colleague Dorothy Doolittle (1984) breakdown a 100m dash into component parts and quantify 

their respective contributions. The contribution of the block portion of the race is said to be 5% 

but also serves to bolster the acceleration phase, estimated to contribute 64% of a 10 second 

100m sprint. A critical element of starting performance is the set position a sprinter achieves 

prior to the sound of the gun, as this situates the athlete in the best position for rapid force 

production and to displace the center of mass horizontally. Coinciding with findings from Kugler 

and Janshen (2010) observing physical education students performing submaximal and maximal 

accelerations, concluded higher accelerations were generated by orienting forces in a lower but 

more forward manner. Faster subjects displayed a more posterior foot placement paired with 

greater forward leans resulting in greater propulsive forces. This creates a situation where 

positioning and placement of body segments dictates functional outcomes and is of upmost 

importance. 

Detailing the importance of a good start on overall performance, the current literature has 

solidified the start and set position as critical elements for sprinting success. (Coh et al., 1998; 

Debaere et al., 2013; Milanese et al., 2014). Tellez and Doolittle (1984) detail block spacing, 

lower limb angles in the blocks, which limb to place forward, and hand placement in the blocks.  

In contrast, Salo et al. (2016) observed university level athletes and advise coaches to allow 

athletes to choose block settings they are comfortable with rather than placing them into blocks 

based on strength of legs. Further contrasting Tellez and Doolittle who advocate a 90 degree 

front knee angle and 135 degree rear knee angle, Milanese et al. (2014) who used university level 

athletes to conclude a 90 degree rear knee angle allows for greater horizontal velocity while 
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leaving the blocks, but requires significantly greater timeframes. This may be problematic as the 

increased time needed to create greater horizontal velocity may be counterintuitive. It seems 

coaches should aim to optimize both force generated and subsequent velocity with the time taken 

to do so.  

None the less, sprint coaches should strive to set up athletes blocks in a manner by which 

they display 90-100 degree front knee angles and 120-140 degree rear knee angles (Harland & 

Steele, 1997). This should be done early in the training year to familiarize athletes with correct 

positioning, serving to allow them to feel comfortable and familiar with good positions during 

the crux of competition.  

Physical Abilities and the Sprint Start 

During the sprint start from blocks, it becomes especially important to develop force as 

fast as possible (Mero et al., 1983). Maulder et al. (2006) examined male track athletes sprinting 

from blocks and concluded the ability to generate power during static and countermovement 

jumps were good indicators of 10m sprinting performance. In a more direct manner Slawinski et 

al. (2010) used motion analysis capture system to calculate rate of force development and 

impulse during the pushing phase on the block of elite level sprinters. Findings presented elite 

level sprinters separated themselves by placing their center of mass closer to the finish line, 

displaying greater explosive strength, and having better arm coordination. These results clarify 

the foundational role served by an athlete’s physical abilities and how technical prowess and 

physical abilities are highly integrated. 

 Creating horizontal velocity in large amounts is the objective of the sprint start (Mann, 

2013). Developing necessary supporting forces (vertical) allows for all other force production to 
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be allocated horizontally producing the most horizontal velocity possible. This goal is 

accomplished with optimal block set up, correct starting positions, mechanical proficiency, and 

the physical abilities of the athlete in the form of strength and rate of force production. Tellez 

and Doolittle (1984) have considered block set up, set position, and block clearance to be 

indispensably important to the sprint start and succeeding transition and acceleration phases of 

the race. Starting and acceleration abilities have been found to directly generate results in the 

60m and 100m races (Slawinski et al., 2010). Therefore, the start serves as the cornerstone of 

these competitive sprint races, and has the capability to situate athletes to a position where 

sprinting brilliance is attained.  

Acceleration 

Understanding the importance of attaining the highest horizontal velocity possible, the 

athlete is tasked with pursuing the maximal sprinting velocity he or she can achieve. In order to 

attain maximal velocity, the athlete should strive to accelerate for the longest distance in the 

shortest possible timeframe (Tellez & Doolittle, 1984). As the athlete accelerates for a longer 

period of time, the inevitable deterioration of sprinting velocity is prolonged to later point in the 

race, which may allow them to maintain a higher average velocity throughout the race. 

The importance of acceleration, maximal velocity and speed decay are exemplified in a 

paper by Ae et al. (1992) displaying the 10 meter intervals of finalists at the 1991 Tokyo track 

championship. The information shown here illustrates the ability of higher level performers to 

not only attain superior sprint velocities, but also decelerate less compared with other lower 

performing finalists. With closer examination of the data from this endeavor the eventual winner 

(Carl Lewis) is behind eventual 3rd and 4th place finishers until at least the 70m mark and quite 
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possibly just before 80m. Finishing, Lewis was unable to overtake the eventual second place 

finisher until the 90m mark. 

The potential underlying explanations for this manifestation may be a prolonged 

acceleration phase. The prolonged nature of this phase may have given Lewis an extended 

timeframe to produce force, resulting in greater terminal velocities and momentum. In agreement 

with previous literature van Ingen Schenau and colleagues (1994) establish maximal sprinting 

velocity depends on and is dictated by the preceding acceleration phase. Therefore, the 

acceleration phase forms the essential linkage between the sprint start and maximal velocity 

sprinting. 

The acceleration phase has been previously subdivided by Debaere and colleagues (2013) 

into an initial acceleration (IA) (0-10m) and a transition phase (TP) (10-30m). The IA is heavily 

dependent upon the sprint start and the success of the TP is dictated by and affective IA. The IA 

is characterized by a forward lean of the trunk and powerful extension of the lower limbs. The 

forward lean of the trunk allows the athlete to exert force down and back into the ground, as 

foot-ground contact is made in front of the sprinters center of mass and can be viewed as part of 

the technical element of sprinting. Important to note, high-level sprinters do not drive through 

full knee extension in this phase, as a quicker reposition of the limb outweighs the benefits of full 

extension (Mann, 2013). Sprinters displaying proficient accelerative abilities will demonstrate 

movements predominantly in the front of the body, actively and aggressively attack the ground, 

and have large amplitudes of arm movements.  

Morin et al. (2011) found the way in which force is applied to the ground to be a 

determining factor in 100m sprint performance. In accordance with Newton’s third law of 
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motion, Morin et al. (2011) highlight the importance of orienting forces horizontally and label 

the vertical portion of force production ineffective but required in producing forward 

acceleration. In a recent influential investigation, Rabita et al. (2015) examine elite sprinters and 

their sub-elite counterparts in a virtual 40m acceleration from blocks and agree the effectiveness 

of force application is of vital importance and can separate elite from sub-elite level sprinters.  

Supporting the ability of sprinters to orient their forces down and back, Nagahara, 

Mizutani and Matsuo (2016) examined step-to-step ground reaction forces from a well-trained 

sprinter in a simulated 100m race. Fifty-four force platforms were laid down under a track 

surface and measured the ground reaction forces from the block start to the 50.5m point. 

Findings report vertical and horizontal ground reaction forces increased and decreased until 

approximately the 17th step. Results highlight the transition of the sprinter’s body position 

around the fifth step of the simulated sprint race characterized by the increase in propulsive 

impulse, stabilization of step frequency and suspension of decreasing ground contact times.  

The IA from blocks, the TP is characterized by a progressive transition from the forward 

trunk angles seen in the IA to an upright running postures seen in maximal velocity sprinting. 

The objectives of the TP are to build upon the velocity and momentum generated during the start 

and IA as well as position the sprinter in advantageous postures. Although not well studied, the 

transition phase has the ability to set-up subsequent phases within the sprint race.  

Hunter et al. (2005) examine sprint acceleration kinematics and ground reaction force 

data at the 16m mark and found horizontal impulse and sprint velocity to have a strong 

relationship. Although not entirely indicative, GRF data at the 16m mark was found to be 

representative of the athlete’s ability to apply GRF during previous stance phases. Relative 
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propulsive impulse accounted for 57% of sprint velocity variance, while relative braking impulse 

accounting for only 7%. Hunter et al. conclude the most favorable magnitude of relative vertical 

impulse is one creating brief flight times allowing the reposition of limbs and all other strength 

reserves be directed horizontally.  

 More recently, Yu et al. (2016) provide some insights from their investigation comparing 

the transition phase to the maximal velocity phase in twenty young male sprinters. Findings 

included a decreased braking duration and increased propulsive duration during TP compared to 

maximal velocity. Interestingly, horizontal braking forces were significantly different but 

horizontal propulsive forces were similar during the two sprint phases, potentially indicating 

greater acceleration is caused by lower horizontal braking as opposed to greater horizontal 

propulsive phases. Techniques to decrease braking may be beneficial to the competitive sprinter. 

Performing an effective transition allows the fusion of the initial acceleration and the 

maximal velocity phase and dictates how the sprinter will enter this next phase. Maximal 

velocity, which has been considered significant to sprinting performance, is dependent on a 

refined ability to accelerate and therefore should be a point of emphasis while training sprint 

athletes as well as field and court sport athletes.  

Maximal Velocity 

Perhaps the most investigated aspect of sprinting, the maximal velocity phase, contains 

athletes’ top end speed and has been strongly correlated with sprinting performance (Bruggeman 

& Glad, 1990; Mackala, 2007; Volkov & Lapin, 1979). By gradually increasing body postures 

and generating copious amounts of momentum, proceeding phases serve to position the athlete 

optimally for maximal speed. From the gradual progression body segments, maximal velocity 
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sprinting is characterized by upright postures whereas the sprinter is in a “tall stacked” position 

with regard to the shoulders and hips. Sprinters should display leg movements primarily in the 

front of the body and contact the ground slightly in front of the center of mass (Mann, 2013). 

These mechanics allow for optimal force production as well as economical translation down the 

track. Importantly, without the proficient navigation of previous phases, it is difficult to apply 

forces and achieve positions necessary for high-level performance. Thus, the maximal velocity 

phase of sprinting will leave something to be desired. 

Paramount to understanding the maximal velocity phase of sprinting, a research group 

directed by Dr. Peter Weyand has provided practitioners with valuable information, which serves 

to aid both athlete and coach through the training process. The first of Weyand and Colleagues 

findings was in 2000 concluding faster top speeds are attained with greater ground reaction 

forces rather than a quicker repositioning of the limbs. In accordance with findings in 2000, 

Weyand and colleagues (2006) concluded sprint performance is dictated by the time available to 

produce force. In 2010, Weyand et al. examined forward and backward running along with 

hopping and concluded maximal volitional forces cannot be applied within the stance timeframes, 

as such the large mass-specific forces necessary for high-level sprinting must be developed 

quicker to improve performance.  

While examining elite level sprinters compared to sub-elite sprinters and collegiate 

athletes, Clark and Weyand (2014) discovered elite level sprinters display an asymmetrical force 

time curve opposing the spring mass model of sprinting, which postulates the first half of sprint 

stance is used to store elastic energy via eccentric contraction of the muscle-tendon unit and 

released during the second half (Dickinson et al., 2000). This finding further highlighted the 

importance of sprinters’ ability to produce high levels of mass specific force in brief time periods. 
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Sprinters’ ability to produce asymmetrical force time curves was not exclusive to higher running 

speeds. Whether this ability is indicative of elite level sprinters genetic ability to produce force, 

trained ability to produce force, or technical proficiency over many years of training, remains to 

be seen. It is likely elite-level sprinters’ possess genetic traits lesser sprinters lack, as well as 

demonstrate greater technical prowess.  

Moreover, Clark and Weyand (2014) found the ability to produce more force in the first 

half of the stance phase separated level of performance. Buechner et al. (2015) examined 

collegiate athletes accustomed to short duration sprinting at maximal velocity on a high-speed 

instrumented treadmill. Examination lasted no less than six sessions including one treadmill 

acclimation day, pre-test, gait intervention/drills/sprints and post test. Sprinting trials on gait 

intervention days were completed by subjects at 90% while receiving cues. In addition to cues 

during sprinting, three sprint drills were performed before sprint trials to maximize ground-foot 

collision. The three drills used included: double quick leg hop, A-skip with a pause, and single 

leg rapid high knee. Results of the study suggest alterations to gait mechanics were the causal 

factor in creating a 6.7% increase in top speed. This increase in speed was done without an 

increase in average ground reaction force following intervention, however, there was a slight 

increase in vertical forces applied during the first half of foot-ground contact. Findings lead the 

authors to believe in accordance with Clark and Weyand (2014) the intervention emphasizing the 

first half of ground contact may have enabled subjects to apply greater forces in the first half of 

the stance phase, leading to faster sprint velocities at maximal velocity. 

With greater technical proficiency and enhancements in training humans are able to apply 

larger and larger forces to the ground in seemingly smaller timeframes. Is there then a limit to 

human’s ability to sprint at maximal velocity? Miller, Umberger, and Caldwell (2012) use 2-D 
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modeling to determine the function of specific tissues of the body while sprinting maximally. 

Findings indicate the most important contractile property of muscle regarding the limits to 

maximum velocity is the force-velocity relationship. Zatsiorsky and Kraemer (2006) remind us 

the force velocity relationship states force and velocity of contraction are inversely related, as 

one increases, the other decreases proportionally. 

After a sprinter has attained his maximal velocity, it is of primary importance that the 

sprinter delay a decrement in speed for as long as humanly possible. Evidence of this exists in Ae 

et al. (1992) in addition, it is shown top level performers not only achieve a higher velocity but 

also tend to minimize (to a greater degree) deceleration from maximal velocity compared to 

inferior performers.  

In an analysis of the worlds fastest man, Usain Bolt’s best three sprint performances of 

9.58, 9.63, and 9.69 s in the 100m were compared. Upon investigation, investigators and 

practitioners can appreciate the magnitude of this data and its relevance for future performance 

enhancements. As such, it is not Bolt’s ability to attain a higher maximal velocity, which 

separates the three races; it is the initial acceleration and transition that make the difference. In 

fact, Bolt maintained a higher maximal velocity for a longer period of time in his London 

Olympics performance of 9.63 s compared to his world record 9.58 s in the Berlin performance.  

Demonstrating the importance of a holistic approach in sprinting, one cannot focus solely 

on one phase of the sprint but must configure a way in which all phases of the sprint are learned 

in sequential order as to reinforce sprint specific physical literacy as well as technical proficiency. 

Training with the aim of enhancing the ability to produce force quickly (RFD) and demonstrating 
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higher levels of technical proficiency are likely beneficial and should be the foundation of 

training programs.  

Physiological Underpinnings of Sprinting Performance 

In the last 8 Olympics the difference between standing atop the podium with a gold 

medal (1st) and being omitted from the podium, (4th) was decided by less than 1.5% (DeWeese et 

al., 2015a). Moreover, the difference between first and fifth place in a sprint can be hundredths 

of a second, therefore seemingly trivial disruptions in training may have large consequences 

(McCann, 2008). With this in mind, a coach’s understanding of how training may affect 

performance is of high importance, as previous studies have found tapering strategies to elicit 

performance improvements between 3 and 6% (Bazyler, 2016; Mujika & Padilla, 2003). 

Although these studies were conducted with throwing and distance athletes, this evidence 

highlights the importance of understanding training theory and the biological processes 

governing performance and suggest certain strategies could potentially take an athlete from 

merely being in the final to winning the gold medal. 

As detailed in earlier sections, the importance of strength, rate of force development, and 

power are important for high levels of sprinting success. Further, it should be understood these 

physical abilities are resultant of the athlete’s physiology and may only be realized when the 

athlete’s physiology is in an optimal state. Therefore, training exposures affect the physiology of 

the athlete, which serve as the basis of performance. In order to alter physiology, training must 

be planned, encompass intelligent design, and adhere to sound principles allowing for injury 

prevention and performance improvement. Understanding the underlying mechanisms along with 

biological processes and their interaction with performance are vital for eliciting desired 

adaptations at advantageous time points.  
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Physiological Mechanisms 

The basic function of muscle is to generate force; as a result, muscular contraction is the 

source of human movement (Stone, Stone, & Sands, 2007). The interaction or cross-bridging of 

contractile elements actin and myosin have been elucidated previously (Huxley, 1958; Huxley & 

Hanson, 1954; Huxley & Niedergerke, 1954) and form the foundation for muscular contraction. 

A well-known contractile phenomenon detailing the trade off between speed of contraction and 

force of contraction is the force-velocity relationship. Simply enough, as sarcomeres begin to 

move at faster speeds, it is increasingly difficult for cross-bridges to attach, resulting in fewer 

cross-bridges. Fewer cross bridges lead to lower force outputs as force applied depends on the 

number of attached cross-bridges (Cormie, McGuigan, & Newton, 2011). Thus, the relationship 

between speed of contraction and number of cross-bridges formed dictates force generation 

capabilities (Stone et al., 2007) and consequently human locomotion. 

  Detailed above, the force-velocity relationship has limiting affects on maximal sprinting 

speed (Miller et al., 2012).  Representing the fastest possible cross-bridge cycling rate of muscle, 

Vmax correlates well with the maximum dissociation rate by Adenosine Triphosphate (ATP). 

Due to the inability to form a cross-bridge while intact with another protein, the biological 

processes required for disassociation and re-attachment, termed enzyme kinetics, serve to place a 

governor on contraction velocity (Barany, 1967; Nyitrai et al., 2006; Siemankowski, Wiseman, 

& White, 1985;). Although the fixed rate of attachment and detachment of cross-bridges 

provides challenges physiologically, increasing force capabilities leading to increases in speed 

may be optimized with other strategies. 

Regulating rapid force production, muscle fiber type partially determines sprinting 

success (Thorstensson, Grimby, & Karisson, 1976; Tihanyi, Apor, & Fekete, 1982). Seven 
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human muscle fiber types have been previously identified and lie on a continuum (I, IC, IIC, 

IIAC, IIA, IIAB, IIB) characterized by speed of contraction with type I and type IIB representing 

the slowest and fastest renditions (Scott, Stevens, & Binder-Macleod, 2001). While training can 

serve to alter fiber type and size (Anderson & Aagaard, 2010), peak power outputs have been 

shown to be greater in muscle groups with type II fibers compared to type I fibers (Thorstensson 

et al., 1976; Tihanyi et al., 1982). Moreover, it would be advantageous for sprint athletes to 

increase the amount and mass of type II muscular fibers whilst decreasing type I fibers.  

 In 1976 Costill et al. confirmed previous research findings and theories about the notion 

of strength and speed athletes possessing greater amounts of type II fibers. Along with this 

verification, validation of yet another significant finding highlighting the importance of athlete’s 

genotype was corroborated. In a recent investigation from Ball State University Trappe and 

colleagues (2015) evaluated the skeletal muscle of a current world record holder in the 60m 

hurdles and former world record holder in the 110m hurdles. With the importance of examining 

elite level subjects exhausted previously, the notion of evaluating the physiological 

characteristics of an athlete of this caliber is quite fascinating. Resulting from muscle biopsy, 

discoveries include a high abundance of type IIx muscle fibers (24%) and a total fast twitch fiber 

populace of 71%. Power outputs comparing type IIx to IIa were 2-fold greater and 14-fold 

greater than type I. Expanding Costill and colleagues (1976) declaration of genotype’s 

prominence on athletic success, transcription level for growth and remodeling genes of type IIx 

fibers were highly responsive to intense exercise. Findings of this nature only further substantiate 

the heavy implications genes have on athletic performance. 

 Characteristics of muscle, including fiber type and proportion of various fiber types, are 

important to understanding the entire physiological profile of muscle. It is important to 
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understand the physiological profile of muscle architectural constructs as well. A seminal 

concept in understanding muscular physiology is the relationship between cross sectional area 

(CSA) and maximal force production. This concept will serve as one of the foundational 

elements from which training plans will be constructed.  

 Previous investigations have established the amount of force generated by a muscle is 

directly proportional to the muscles CSA, regardless of fiber type (Bodine et al., 1982; Cormie et 

al., 2011). As has been noted throughout this piece, power and the ability to produce force 

quickly is important to sprinting. If power is equal to the force produced multiplied by the 

velocity (F x V), and we recall velocity of contraction is limited by enzyme kinetics, then power 

is influenced by CSA and a muscle with higher CSA should produce greater power (Malisoux, 

Francaux, Nieiens, & Theisen, 2005; Shoepe, Stelzer, Garner, & Widrick, 2003; Widrick, Stelzer, 

Shoepe, & Garner, 2002). Wessel et al. (2010) present data indicating an inverse relationship 

between muscle fiber size and oxidative capacity. It seems muscle fiber size and oxidative 

capacity are in constant turmoil and contest each other, as these characteristics are influenced by 

different signaling pathways which drive opposing adaptations. With this knowledge, a sprinter 

should strive to increase mass specific force production, and although increases in muscular size 

can yield increases in overall force production and could beneficially effect sprint performance, 

increased CSA could potentially come at the expense of sprinting performance. Care should be 

taken to ensure that increased CSA is not indiscriminate and that architectural specificity is 

preserved and the II:I CSA ratio is enhanced. Importantly, heavy strength training and high 

velocity have been shown to enhance hypertrophy of type II muscle fibers to a greater degree 

than type I (Cormie et al., 2011). Although, much of this research is completed on relatively 
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untrained individuals with moderate strength levels, stronger more experienced athletes will gain 

less CSA and take a greater duration to do so (Sale, 1988).  

 Conceptually, the maximal force exerted by the athlete and the maximal velocity of 

movement by the athlete represent the two terminal ends of the force-velocity curve. Maximal 

power output is thought to reside directly between these two polar ends. The physiological 

mechanisms leading to greater force output are greater CSA and the mechanisms leading to 

greater contraction velocity are enzymatically limited. Consequently, progressing athletes’ 

muscular power is influenced primarily through heavy strength training as opposed to specific 

power training (Cormie et al., 2011).  

 In addition to the above mechanisms, fascicle length and pennation are architectural 

components of muscle serving to aid primarily in velocity of contraction and force of contraction 

respectively. The velocity of a muscular contraction has been found to be proportional to its 

length (Bodine et al., 1982; Edgerton et al., 1986). Since power output is heavily reliant on 

velocity, it would be advantageous for sprinters to exert higher velocities through longer 

fascicles. Previous findings support fascicle length as an indicator for sprinting performance in 

the 100m (Cormie et al., 2011). Comparing and contrasting sprinters and long-distance runners, 

sprinters have been found to have significantly longer fascicles compared to their long duration, 

slower velocity counterparts (Cormie et al., 2011). It is not well understood if sprinters possess 

greater fascicle length due to specific training or genetic endowment (Cormie et al., 2011). 

Training modalities with the goal of eliciting greater fascicle length have been inconclusive, and 

require further research to be well understood.  
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 Pennation angle has been correlated with a muscles ability to produce force (Cormie et al., 

2011) and therefore is important to power output capabilities. Although an increase in pennation 

angle is found to have negative effects on maximum contraction velocity, it is theorized the loss 

in contraction velocity is counteracted by proportionally larger increase in force production 

leading to greater power (Cormie et al., 2011). Moreover, heavy strength training has been 

shown to increase pennation angle as well as CSA and force exertion capabilities (Cormie et al., 

2011). However, more examination is required to establish how pennation angle adaptations to 

heavy strength training.  

With the current understanding of physiological mechanisms underlying performance, the 

coach may now be guided through neurological morphologies taking place. These adaptations 

serve to deliver the signal to the developed muscle at a quicker rate and/or in sequential fashion 

in order to produce the desired movement, minimizing extraneous movements and forces.   

Neurological Mechanisms 

 The essence of life on earth is movement. In order to move, a person must activate the 

appropriate muscles through stimulation of motor neurons serving to produce forces required for 

the desired movement. Therefore, any movement can be viewed as a highly technical, 

information rich, and precision based conversation between the nervous and muscular systems 

resulting in force application (Jeffreys & Moody, 2016). As we understand from previous 

sections, protein cross-bridging is the result of an action potential, and force application is a 

result of cross-bridging. Ion fluctuations in the membrane of cells create this action potential and 

occur in response to a stimulus. If large enough, the action potential stimulates an electrical 

charge or nerve signal that further propagates down the axon of the nerve, via saltatory 
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conduction, towards the intersection of the nerve and muscle, more commonly termed the 

neuromuscular junction (Stone et al., 2007).  

 As the nerve impulse reaches the neuromuscular junction, the terminal end of the axon 

releases neurotransmitters contained in synaptic vesicles, lying within the synaptic bulb or knob. 

At the instant a sufficient action potential arrives at the synaptic bulb, neurotransmitters are 

released and traverse the synaptic cleft, binding to receptors at the muscular level and serving to 

depolarize the muscle and ready the tissue for contraction, force output, and subsequently 

movement (Kenny, Wilmore, & Costill, 2012). Mentioned briefly above, there are many steps 

and processes involved. Important to understand, sporting movements are the result of a 

neurological signal’s interaction with the muscular system. 

 With specific sporting movements studied and found to occur in less than 0.3 seconds 

(Taber et al., 2016) the required conversation between the muscular and nervous system resulting 

in sport movements occurs at an even greater rate. Sensory stimuli via the afferent neurons is 

interpreted and then sent downstream as motor commands to enhance movement via efferent 

neurons. Therefore, training to enhance the neuromuscular system’s prowess should be at the 

forefront of all training programs. Enhancing neural transmission by one to two milliseconds 

may seem trivial; however, sprint races can be decided by hundredths or thousands of a second. 

From a practical standpoint increasing nerve conduction velocity by a millisecond or two could 

mean the difference between a gold and silver medal.  

 Nerve conduction velocity (NCV) is the speed at which a nerve impulse travels down to 

an effector cell or tissue. Although not much research is available detailing NCV and explosive 

performance, a recent study by Methenitis and colleagues (2016) establish correlations between 
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NCV of the vastus lateralis and countermovement jump performance. Findings show NCV and 

RFD are closely linked and of interesting note the correlation between NCV and RFD at 50 

milliseconds was lower than at later time periods. The authors postulate non-efficient recruitment 

of type II muscle fibers in very early portions of explosive performance for this result, as they 

were not power-trained. The results established a link between NCV and multi-joint explosive 

performance and also found NCV is more highly correlated to RFD than maximum isometric 

force.  

 Serving to hasten the speed of the nerve signal down the axon, two aspects of the neuron 

determine how quickly the impulse travels: diameter and myelination (Kenny et al., 2012). 

Myelination is the insulating layer surrounding a nerve fiber (Saladin, 2010) and has been linked 

to skill acquisition and strength (Kenny et al., 2012). Myelin helps transmit nerve signals 

relatively long distances in an efficient manner, and the larger the myelin sheath, the greater the 

speed with which signal propagation occurs (Banich, 2004). While myelination is not a specified 

target of the training process, it remains a vital component in the speed at which neural signals 

travel and can produce desirable actions from effector cells. 

Neuronal diameter can also serve to quicken nerve impulses towards effector cells. The 

greater the diameter of the neuron, the greater the surface area, which allows for enhanced NCV 

when compared with smaller fibers (Saladin, 2010). Commonly understood, the functional 

properties of motor units, including size, depend on muscular function and activity pattern 

(Mrowczynski & Lochynski, 2014). This evidence along with other evidence (Ross et al., 2001) 

postulates that with training, the size of the neuron may be upgraded or degraded with the 

training modality chosen. Just as observed in bone, Wolff’s law (Frost, 1994) may apply to 
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neurophysiology. Implying that training may stimulate remodeling structures to better suit the 

environment or demands placed on it, more research is needed.   

 With the foundational elements of the electrical impulses sent from the nervous system to 

the muscular system detailed above, a description of neural characteristics of more applied 

mechanisms leading to performance will now be specified including: firing frequency, 

synchronization, coordination, co-contraction, and co-relaxation.  

 Firing frequency or rate coding, describes the rate at which neural impulses are 

transmitted to the muscle from the motor neurons (Cormie et al., 2011). Increasing firing 

frequency increases the magnitude of force production and has been estimated to increase as 

much as 15 times (Enoka, 1995). Additionally, firing frequency has also been shown to impact 

RFD as a result of increasing motor unit recruitment, rate coding, and an increase in doublet 

discharges attributed to ballistic type training in the tibialis anterior (Van Cutsem, Cuchateau, & 

Hainaut, 1998). Doublet discharges are rapid bursts of two action potentials instead of one, 

allowing for ultimately higher force outputs at an increased rate. This may be especially 

important for sprinters whose speed of contraction is of utmost importance. Although there is 

support to suggest maximal voluntary contraction is not enhanced with training, most recent 

studies detailed in by Cormie and colleagues (2011) suggests training does in fact enhance 

maximal voluntary contraction.  

 Coordination of motor units is of vital importance as agonist and antagonist musculature 

contest each other with the flexion or extension of limbs. If an athlete lacks synergy between 

muscle groups and/or motor units, he will be generating a resistance to his/her own performance. 

As synchronization can be linked with RFD (Semmler, 2002), the sequential musculature 
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contractions used to produce forces needed to display certain body positions in sprinting are 

vitally important.      

 In a recent inquiry, Coh and collaborators (2016) detail the importance of both intra and 

inter-muscular coordination in elite level sprinters. Coordination, much like synchronization, 

serves to allow athletes to sprint with great efficiency, allowing for the summation of forces 

around a joint to displace the center of mass, as opposed to, minimization of forces around a joint 

due to a lack of coordination. Further, Coh et al. (2016) detail the critical nature of co-activation 

of agonists and antagonists permitting the lower limbs to function as very stiff springs, allowing 

for a diminished vertical drop of the hips which has been determined a key parameter of elite 

level sprinters by Mero et al., (1992).  

The above information is a snapshot synopsis of the governing elements of translating 

synaptic input into a sequence of motor commands, executed by muscle fibers, resulting in 

movements. It should now be understood there are many mechanisms underlying performance. 

We have some idea of how training impacts these mechanisms, but much remains to be 

elucidated. In the following sections, the training used to elicit and enhance these mechanisms 

will be detailed.    

Understanding Physiology Allows for Superior Training Means 

 The ability to view training as a means to alter physiology and bolster performance from 

enhancements in technical proficiency stemming from enhanced physicality, will allow the astute 

coach the capability to deliver an enhanced service to the athletes they oversee. Grasping the 

various mechanisms driving the physiological adaptations specified above, the coach may now 

critically assess the merit of training activities as it pertains to the time of year, fitness phase, 
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training foci, and adaptation process. Critically assessing the training plan and process is an 

important aspect if the coach seeks further improvement. When devising a training plan, 

obtaining the underlying rationale for training decisions is of paramount importance. Stated 

differently, the coach should understand the “why” behind all training decisions made and refrain 

from making decisions based solely on tradition and previously accepted training practices. The 

following sections will detail the implementation of Seamless Sequential Integration (SSI) and 

importantly a rationale as to why training decisions are made, although, not all decisions will be 

elucidated, many examples will be given.  

Seamless Sequential Integration 

With the goal of maximizing sprinting performances, both maximal strength and power 

are important attributes; as a result, the need for an integrated strength training program becomes 

obvious (Bompa & Haff, 2009). Seamless Sequetial Integration (SSI)! Devised and first 

described in the literature by DeWeese, Sams, & Serrano (2014), SSI is a model of training 

which blends the tenets of the Conjugate Sequential Sequencing (CSS) in conjunction with a 

short to long speed development approach. Originally developed for Track & Field athletes and 

later used with winter sport athletes, SSI allows the development of physiological abilities while 

serving to hone an athlete’s sprinting aptitude. Although many programs have been shown to 

improve strength and speed (Rumpf, Lockie, Cronin, & Jalilvand, 2016), to date there is a 

paucity of literature illustrating the integration of strength and sprint training among competitive 

sprinters (Bolger et al., 2015). SSI has been implemented within a variety of different sports 

requiring speed, strength and explosiveness. In this endeavor SSI was used to enhance the 

attributes of an elite level sprinter.  
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Strength Training Theory & Design 

  Strength training forms an essential pillar from which SSI was built. The purpose of 

strength training within the SSI model is to enhance the athlete’s physical abilities in such a way 

to allow superior technical and tactical prowess within the competitive endeavor. Conjugate 

Sequential Sequencing (CSS) is the manner in which training stimuli are specifically planned to 

elicit superior adaptations. However, in order to understand the merits of SSI and CSS, it is first 

necessary to understand the concept of periodization. As Plisk and Stone (2003) state 

periodization is the logical phasic manipulation of training factors in order to optimize the 

overall training process. Further definitions include the cyclical nature of training and the 

inclusion of a comprehensive monitoring system (DeWeese, Sams, & Serrano, 2013). Although 

often used synonymously, it is important to note the difference between periodization and 

programming. Periodization deals primarily with timelines and fitness phases and the latter 

details numerical sets and repetition schemes (Stone et al., 2007). 

 Specified in other works on periodization, conjugate successive sequencing (Bompa & 

Haff, 2009; Stone et al., 2007; Verhoshansky, 2006; Verhoshansky & Siff, 2009), long term 

phase potentiation (Harris et al., 2000; Haff & Nimphius, 2012; Judge, 2007) and block 

periodization (Issurin 2008, 2010) are conceptually alike. Serving to sidestep confusion for the 

reader, conjugate successive sequencing will be the primary referenced term. It matters not 

which term (CSS, Phase Potentiation, Block Periodization) is explained as all are strikingly 

similar, and more importantly, the mechanisms underlying the foundational premise of the above 

terms are exactly the same.  
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Moreover, while explaining conjugate successive sequencing (CSS) Verhoshansky & Siff 

(2009) describe the use of concentrated workloads, unidirectional loading, and consecutive rather 

than simultaneous development of abilities. Further, Plisk and Stone (2003) cite the role of the 

delayed training effect as the basis of this system. Logically termed, delayed training effects are 

those not seen for a period of time after training is imposed. (Stone et al., 2007). Delayed 

training effects may modulate responses in future blocks, while suppressing emphasized abilities 

during high workloads (Bompa & Haff, 2009). Displaying differing rates of decay, physical 

abilities are heavily based on enzymatic properties (Viru 2001,1995; Plisk & Stone, 2003). As 

discussed in the sliding filament theory above, these enzymatic properties serve to speed up 

biological processes and allow for enhanced movement. Therefore, it becomes important to 

understand the role of how training impacts these enzymes, which regulate adaptation and 

performance.  

Plisk and Stone (2003) discuss the importance of the preparatory period (length, size) in 

determining the stability of residual training effects and their corresponding enzymes. Sound 

training residuals, founded in the preparatory period, allow for the maintenance of abilities with 

minimal loading, permitting emphasis to be assigned elsewhere as well as controlling residual 

fatigue. Therefore, it is beneficial to have long periods of preparation to maximize the 

accumulation of training residuals and optimize performance during critical time periods. It 

would be remiss to underestimate the importance of early portions in the training process. 

Comprehending the importance of delayed training effects and enzymatic processes, 

discussion can now move to more applied tenets of CSS. Essential to the training of elite athletes, 

concentrated loads (CL) imply a specific attribute is focused on and training volume or intensity 

of this chosen quality is above normal levels. The foci of a CL may be a physical ability 
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(strength endurance, strength, RFD) or a desired skill (acceleration, maximal velocity, speed 

endurance). Generating superior adaptations through larger specific disturbances in homeostasis 

is a central strategy to CSS (Verhoshansky & Siff, 2009). After the completion of a CL, training 

of that specific quality moving forward is de-emphasized usually from a volume standpoint but is 

still incorporated to postpone involution as shown in Figure 1 below. Training then advances to 

another CL with a focus on a different attribute. Employing concentrated strategies has been 

known to produce long lasting after effects serving to enhance or potentiate subsequent training 

phases, otherwise known as phase potentiation (DeWeese, Hornsby, Stone, & Stone, 2015b). 

Phase potentiation serves to build on previous blocks of training allowing superior training 

adaptations when compared with non-sequenced training periods (Haff & Nimphius, 2012).  

Practically, Harris and colleagues (2000) demonstrated this with football athletes while 

inspecting differences between three weight training protocols: high force, high power, and 

combination (sequenced) of high force and high power. Findings indicate speed-strength training 

or a combination of heavy strength and power training proceeded by heavy weight training 

produce greater results compared to speed or heavy weight training alone. Therefore, it is likely 

beneficial for athletes and coaches desiring explosive performance to sequence training means 

from a maximal strength emphasis to an explosive emphasis. 
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Unidirectional loading provides contrast between the two main systems of organizing 

training: concurrent system and the conjugate sequential system (Verhoshansky & Siff, 2009). 

Concurrent systems of training focus on many tasks simultaneously. Verhoshansky and Siff 

(2009) state the concurrent system does not allow for as great of a specific disturbance of 

homeostasis, therefore elicits a broadened adaptation. A multivariate approach associated within 

traditional periodization may promote enhancement and entertainment in low-level athletes. 

However, high-level athletes require higher levels of stimulation to evoke desired adaptations 

making multi-focused training approaches inefficient at best (Issurin, 2010). The conjugate 

sequential system uses unidirectional loading, which implies the focus of training is on one 

quality. Importantly, unidirectional loading is used optimally only if utilized in conjunction with 

successive unidirectional loads. 

D 

A 
B 

C 

A A 

B 

A 
B 
C 

Figure 1. Sequence of Stimuli in Conjugate Successive System. Adapted from 
Verhoshansky & Siff (2009) 
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As training graduates from general to specific abilities, development of physical qualities 

is summated on using the previously enhanced general training emphasis, as a foundation that 

leads to higher levels of specific enhancement. Important to emphasize the single foci of 

unidirectional loading does not mean the chosen quality is trained exclusively (Verhoshansky, 

2006). The emphasis in the training phase is on a chosen quality and retaining loads are 

prescribed for maintenance of other qualities (DeWeese et al., 2015b).  

Previously used by educators, concentrated and unidirectional loading has been in use for 

decades. For example, if multiplication is the desired outcome, it is of benefit to the student to 

learn addition and subtraction processes before progressing to higher levels of mathematical 

prowess. When developing multiplication skills, addition and subtraction are not forgotten and 

unused but serve as a secondary and necessary skillset. One might observe the summation of 

educational skillsets from lower to higher levels of expertise and draw parallels to the 

development of the physical skillsets in a training environment. 

Continuing with the analysis of CSS, the use of specialized mesocycles merely entails the 

logical and sequential order of training phases, otherwise referred to as ‘blocks’. There are 

currently three types of mesocycle blocks commonly referred to: accumulation, transformation 

and realization (Issurin, 2008). Accumulation strives to develop basic abilities and movement 

techniques. Transformation seeks to develop more specific abilities building from basic abilities 

established in the previous block. Realization then serves to maximize previously developed 

abilities into competition specific abilities as to optimize performance.  

Taking advantage of residual effects, logical sequencing of concentrated loads can yield 

heightened performances. Sequential strategies manipulate phases of accumulation followed by 
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restitution phases, which allow for the carrying of amplified physiological ability to the 

subsequent phase (Stone et al., 2007). Stated differently, one phase creates adaptations which 

give way to higher performances in the next phase. As the restitution phase commences the 

athlete begins to recover and reach a new (superior) fitness level (supercompensation) 

(Zatsiorsky & Kraemer, 2006). This allows the athlete to then train in the next accumulation 

phase at a higher level allowing for greater adaptation. Over long periods of time the athlete 

becomes incrementally better with continued training. 

Yet another strategy utilized is functional overreaching as detailed by DeWeese et al. 

(2015b). Overreaching allows the manipulation of either volume or intensity above that of which 

the athlete is accustomed to. After the substantial increase in volume or intensity, commonly 

lasting one week, the training stimuli is reduced. Upon return to normal levels of training an 

increase in performance can be expected (Pistilli, Kaminsky, Totten, & Miller, 2008). A further 

reduction in training below normal training levels (exponential taper) may produce even greater 

performance gains (DeWeese et al., 2015b). This is under the assumption proper training 

protocols and fatigue management are taking place. If an inappropriate level of stress is placed 

on the athlete, a progression may not occur, in fact a regression may occur making it difficult to 

return to normal levels.  

Strength Training Means & Methods 

 Stone, O’Bryant, Garhammer, McMillan, and Rozenek (1982) developed a theoretical 

model for strength training. This seminal text outlines on a more practical level how a coach 

might go about planning strength training. The four phases in this model (hypertrophy, basic 

strength, strength-power, and active rest) are not entirely dissimilar than the program used in this 

endeavor. From the mechanisms in sections above, each of these phases are based around the 



	
  
	
  

47 

after affects of the previous phase and serve to build on one another (phase potentiation). The 

hypertrophy phase, renamed high intensity exercise endurance by Stone et al. (2006), serves as a 

starting point. Outlined in the paper, the ultimate purpose of this phase is to increase work 

capacity and cross sectional area. Associations between CSA and force output established above 

make this a logical starting point.  

With the goal of stimulating hypertrophy, a coach would prescribe exercise regimens 

which serve to create three primary stimuli of hypertrophy: mechanical tension, muscular 

damage and metabolic stress (Schoenfeld, 2010). Exercise selection during this block will be 

remedial in nature and entail gross movement patterns and large muscle masses (squats, presses, 

pulls). The remedial nature of this block will serve as not only a foundation from which to build 

physiologically but also pedagogically. For example, early renditions of weightlifting 

movements (pull to knee, mid-thigh pull or power position shrugs) may be used to enhance 

muscular size while simultaneously serving to aid in learning proper weightlifting technique 

(DeWeese, Bellon, Magrum, Taber, & Suchomel, 2015).  

 As the hypertrophy phase comes to a halt, the focus of training will shift to an emphasis 

on allowing the muscle to generate the most force possible using the enhanced musculature. The 

subsequent phase will take the form of comparatively lower volumes and higher intensities than 

the hypertrophy focused training phases. Moreover, this block will serve as a foundation for the 

further development of muscular force generation capabilities. This can be visualized in Stone et 

al. (1982) in Figure 9. As training progresses and each training phase is repeated it should be 

noted the weight lifted increases for the same emphasis. The athlete should strive to lift heavier 

weights in the second strength endurance phase compared to the first strength endurance phase, 

to evoke a greater adaptation. This should be pursued on both an acute and chronic level to 
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ensure optimal adaptations. This requires focus and motivational energy as well as maximal 

intent to move the implement (Padulo, Mignogna, Mignardi, Tonni, & Ottavio, 2012), weight, or 

projectile as fast as possible. Exercise selection throughout this block will build on movements 

learned in previous blocks and also serve to progressively graduate toward weightlifting 

derivatives, employing larger ranges of motion, and allowing for greater loads to be prescribed. 

 After maximizing the ability of the musculature to generate force, explosiveness will rise 

to the primary foci of training. As both power and RFD (Haff & Stone, 2015; Taber et al., 2015) 

have been shown to be paramount to sporting performance, methods used to enhance 

aforementioned qualities will be specified. Much of these movements will be ballistic or semi-

ballistic in nature. Ballistic movements allow for the athlete to accelerate the object, weight or 

projectile throughout the entire range of motion (Maloney, Turner, & Fletcher, 2014). Cormie et 

al. (2011b) demonstrate the ability of ballistic movements to increase power output, possibly 

allowing more specific adaptations to do specificity, and allow higher RFD possibly due to 

increase neural drive, rate of neural activation and coordination.   

 Plyometrics have often provided an avenue to bridge the gap between weight room 

strength and the demands of the competitive endeavor (Chu, 1983). These exercises take 

advantage of the rapid stretch of the musculotendinous complex and result in higher muscular 

force output (Markovic & Mikulic, 2010). Improvements in RFD (Cormie et al., 2011b) are 

theorized and probable with plyometric training, as such this sort of training has functioned as a 

integral training means to improve speed strength in sports. (Judge, 2007).  

 The velocity at which plyometric exercises can be executed makes this sort of stimuli a 

great option for enhancing ability to produce force quickly. Although very high values of power 
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may be displayed in plyometric movements, consider sprinting is governed by ground reaction 

forces and exclusive implementation of plyometrics or potentiation complexes (Haff & 

Nimphius, 2012) is not recommended (DeWeese et al., 2015). Plyometric exercises and 

potentiation complexes most certainly have a distinct purpose in training programs as they 

supplement sprint training and assist in the training of the velocity end of the force velocity 

continuum. Plyometric exercises can be employed with medicine balls or other projectile objects 

during early portions of training to augment movements and enhance resistance to emphasize 

propulsive force production. This will allow the athlete a greater timeframe to produce 

propulsive forces allowing optimal positions to be demonstrated. In later portions of training, 

plyometric exercises can be employed to mimic the raw velocity exemplified on the track and 

train the nervous system to fire at an intensified rate. Further, the coach should have a rationale 

for utilizing plyometric training, as ground reaction forces resultant of plyometric type training 

can be up to 7x bodyweight (Markovic & Mikulic, 2010). Large volumes of this sort of work can 

be injurious if not done in moderation as high impact forces are associated with an increased 

injury occurrence (Grimston, Nigg, Fisher, & Ajemian, 1981; Clement & Taunton, 1980). 

Weightlifting movements will be heavily prevalent as they may provide the single most 

effective type of training in athletic performance (Chiu & Schlilling, 2005). Concern still exists 

when the topic of including weightlifting movements or derivations in the programs of team or 

court sport athletes is broached. Perceived time required for athletes to learn, lack of 

understanding the potential benefits offered from incorporating these movements and potential 

injury concerns are commonly brought to light (Hedrick & Wada, 2008). Many of the sporting 

movements required in sport are of higher difficulty in comparison to weightlifting movements, 

especially the remedial movements such as the mid thigh pull (DeWeese, Serrano, Scruggs, & 
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Burton, 2013). Many coaches in a wide variety of situations have discovered a way to teach these 

movements to athletes so they may benefit. The quality coach is a problem solver and will 

unearth a medium through which these very beneficial movements can be taught. Understanding 

the potential benefit to other sporting movements has been outlined many times (Brewer & Favre, 

2016; Comfort, Allen, & Graham-Smith, 2011a, 2011b; Suchomel et al., 2015). The role of the 

coach is to better serve the athlete through proper education. Hamill (1994) found per 100 

participation hours of various activities weight training and weightlifting had the lowest two 

rates of injury. In opposition childhood soccer had the highest rate of injuries per 100 

participation hours. The aforementioned concerns are met with much evidence to suggest the 

limitation on using weightlifting movement and derivatives is likely coach imposed. Coaches 

must not stand in the way of development but become the gatekeepers ushering our athletes to 

higher levels of success.  

 Briefly, weightlifting movements have been shown to enhance high-load speed strength 

(Hori, Newton, Nosaka, & Stone, 2005) sprinting and jumping ability (Hori et al., 2008; Stone, 

Byrd, Tew, & Wood, 1980; Tricoli, Lamas, Carnevale, & Ugrinowitsch, 2005), and exhibit 

mechanically specificity to most sporting movements (Suchomel et al., 2015). In addition, the 

ability to produce high ground reaction forces limits sprinting speed (Weyand et al. 2000), as 

such the overload attainable through weightlifting derivatives allows large ground reaction forces 

to be exerted into the ground in a rapid manner. McBride, Triplett, Davie, & Newton (1999) 

concluded the activities performed in the weight room should be adapted to meet the demands of 

the sport, when comparing strength and power between powerlifters, weightlifters and sprinters. 

Therefore, amplifying the sprinters ability to produce force quickly is the primary goal of weight 

training for many athletes, with particular interest to sprinters (Taber et al., 2015). Specificity in 
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mind, an athlete cannot be too explosive; therefore weightlifting movements can serve to 

enhance an athlete’s ability to be explosive. If explosiveness is a desirable trait for the sport in 

question, weightlifting movements and derivations will be an intelligent inclusion. Although a 

full review of the benefits of weightlifting for sports performance is beyond the scope of this text, 

interested readers will be guided to further reviews (Brewer & Favre, 2016; Suchomel et al., 

2015).  

 

Block 3- Maximal 
Strength 
Sets/Reps: 5x5, 3x5, 3x3 
Relative Intensity: 85-92.5% 
Exercises Utilized:  
Squats, Push Press, Incline 
Bench Press, Mid-thigh Pull, 
Clean Pull, Stiff-legged 
Deadlift, Pull Up, Mid Thigh 
Clean, Step Up 

Block 4- Strength-Speed 
Sets/Reps: 5x3, 3x3, 3x2 
Relative Intensity: 82.5-95% 
Exercises Utilized:  
Squats, Push Press, Split 
Squat, Bench Press, Step Up, 
Clean Pull, Power Clean, 
Stiff-legged Deadlift, Pull Up, 
Countermovement Shrug, 
Split Squat 

Block 5- Speed-Strength 
Sets/Reps: 4x3, 3x3, 3x2 
Relative Intensity: 80-90% 
Exercises Utilized:  
Squats, Push Jerk, Step Up, 
Bench Press, Power Clean, 
Countermovement Shrug, 
Stiff-legged Deadlift, Push 
Press 

Block 1- Strength 
Endurance 
Sets/Reps: 3x10 
Relative Intensity: 85-92.5% 
Exercises Utilized:  
Squats, Clean Grip Shoulder 
Press, Lunges, Bench Press, 
Pull to knee, Clean Grip 
Shoulder Shrug, Stiff-legged 
Deadlift, Pull Ups, Incline 
Bench Press, Snatch Grip 
Shoulder Shrug  

Block 2- Basic Strength 
Sets/Reps: 3x5 
Relative Intensity: 82.5-
92.5% 
Exercises Utilized:  
Front Squats, Clean Grip 
Shoulder Press, Split Squat, 
Incline Bench Press, Mid-
thigh Pull, Clean Pull, Glute 
Ham Raise, Bent-over Row 
(Barbell), Squat, Bench Press 
Reverse Hyper,  

Block 1A- Return to 
Fitness 
Sets/Reps: 3x5 
Relative Intensity: 82-85% 
Exercises Utilized:  
Squats, Clean Grip Shoulder 
Press, Lunges, Bench Press, 
Pull to knee, Clean Grip 
Shoulder Shrug, Stiff-legged 
Deadlift, Pull Ups, Incline 
Bench Press, Snatch Grip 
Shoulder Shrug  

Figure 2. Strength Training Prescription 
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Important to note, none of the elements mentioned above are irreplaceable. A coach must 

create the best training possible for a given situation. All of the aforementioned features of the 

training process have a rationale behind them and work toward a unifying goal of sprinting as 

fast as possible. Routine monitoring processes should reside within the training program and 

assist the coach in evaluating the programs effectiveness. Strength training is a means to develop 

physical abilities in order to optimally perform the specific quality desired. This observation 

should not be overlooked as the weight room should operate as a breeding ground for the 

development of strength and explosiveness, which is then further enhanced with more 

specialized work in latter portions of the year. Visualized in the Figure 1, the strength training for 

this endeavor is observed. Movements progress from general to specific, large displacements to 

smaller displacements, and high force lower velocity to high velocity medium force outputs. 

Other examples of programs designed using phase potentiation can be found in Judge (2007), 

Stone et al. (1981), DeWeese et al. (2015), DeWeese et al. (2014a, 2014b) and Harris et al. 

(2000).  

Short to Long Speed Development  

Perhaps the most enticing experience of a sprints coach is to guide an athlete to the 

Olympic games, where he or she concludes the competition with the respective National Anthem 

playing over the loudspeaker while hoisting up a gold medal. This seemingly storybook ending 

has taken place 9 times, under the tutelage of world re-known sprints coach Charlie Francis in 

addition to 32 world records. Regardless of the absence or presence of performance enhancing 

agents, there is little doubt methods employed by Francis were effective. 

 Pioneered by the late Charlie Francis with support from Gerard Mock, Horst Hillie, 

Harry Jerome and Percy Duncan (1992) the “Short to Long” (S2L) approach focuses on the 
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athlete’s ability to attain high sprinting velocities then shifts emphasis toward sustaining this 

velocity for greater distances. Logically, competitive sprint athletes cannot achieve maximal 

sprinting velocities without training. Utilizing, the S2L approach progressively permits the 

athlete to realize superior running velocities through a curriculum of focused efforts with the 

purpose of optimizing sprinting skill. Lest we forget, the ability to attain high horizontal 

sprinting velocity hinges on the athlete’s ability to accelerate (Ae et al., 1992; Tellez & Doolittle, 

1984). Therefore, the S2L approach ensures maturation of the athlete’s accelerative abilities, 

which serve as the basis from which upright sprinting technique can be developed. Francis (1992) 

explains technique is a prerequisite to pursue sprinting excellence and high skill levels must be 

developed as early as possible.  

Sprinters under Francis’ supervision were known to perform lower volumes of work 

compared with other training regimens in use at the time. Francis (1992) explains the interplay of 

volume and intensity and proceeds to elucidate higher volumes of work don’t develop power, 

high intensity efforts do. Francis believed only the highest intensity efforts would yield positive 

adaptations in speed. Large emphasis was then placed on recovery modalities and ensuring 

athletes were fresh for high intensity sprinting days.  

While fresh, athletes are able to perform prescribed sprints at a high intensity when 

properly implemented. The high intensity nature of these activities yields high force outputs and 

desirable acceleration mechanics. In the case where an athlete has not yet learned proper 

acceleration technique, shorter sprints and resisted sprints provide learning opportunities for 

younger athletes or athletes needing a refresher course on how to properly accelerate. 

Conceptually shorter sprint distances save the athlete from large volumes of high impact forces 
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and allow for enhanced learning environments. Quality within sprinting is the most important 

concept (Francis, 1992).  

Conceptually, with the prescription of low volumes of sprint training, athletes have more 

opportunities to develop optimal technical execution. This approach ensures the athlete learn 

how to sprint 10 meters with satisfactory technique before progressing to 11 meters and so on. 

Continuing the mathematical learning analogy above, the student does not advance to 

multiplication if simple addition and subtraction are not at sufficient levels. In similar fashion, 

the athlete must not progress to longer sprinting distances or higher sprinting velocities until 

sufficient levels of accelerative abilities are attained. Just as mathematical skills come rather 

quickly to some and not so rapidly to others, differing methods may be required for certain 

athletes.  

Once the athlete is able to demonstrate sound accelerative abilities, prescription will 

advance to longer distances. Implementing longer sprint distances, the athlete will learn to 

extend acceleration resulting in greater amounts of momentum, giving way to higher sprinting 

velocities. Therefore, within the S2L approach acceleration ability is paramount to furthering 

sprinting speed. When emphasis shifts to maximal velocity sprinting or speed endurance work, 

acceleration is just as important as it was in the shorter sprints. Success in maximal velocity 

sprinting and speed endurance work is grounded in the initial acceleration. 
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Logical in conception, the S2L requires a certain level of mastery before moving to 

higher levels of training. Contrastingly, other traditional models focus on physical capacities to 

endure longer distances. These approaches focus on energy system fitness, which can be adapted 

from the later stages of the S2L approach (Billat, 2001).  

Conceptually, these programs suggest the average sprinter has more to gain by 

performing lengthy runs early on. The S2L approach is focusing on long term development of 

sprinting abilities. Additionally, other sprint training regimens try to simultaneously develop 

maximal sprinting speed and speed endurance. Discussed in the strength training section above, 

employing a method with multiple foci is sub-optimal compared with one focus. From a 

Block 4 
Emphasis 
1. Max Velocity 
2. Introduction Speed 
Reserve 
Method: Block Starts, 
Open Accelerations, 
Acceleration Holds, Fly-
ins, Fly-Float-Fly, Race 
Simulation, Speed Reserve 
Runs 

Block 5 
Emphasis 
1. Speed Reserve 
2. Max Velocity 
Method: Block Starts, 
Open Accelerations, 
Acceleration Holds, Fly-
ins, Fly-Float-Fly, Race 
Simulation, Speed Reserve 
Runs 

Block 1 
Emphasis 
1. Acceleration 

  
Method: Incline Sprinting 

Block 2 
Emphasis 
1. Refine Acceleration 
2. Transition 
Method: Incline Sprinting, 
Sled Pulls, Lower inclines, 
Low start positions, Open 
Accelerations 

Block 3 
Emphasis 
1. Refine Transition 
2. Introduction Max 
Velocity  
3. Refine Acceleration 
Method: Open 
Accelerations, Acceleration 
Holds, Fly-ins, Sled Pulls, 
Low start positions, Open                    
Accelerations 

Figure 3. Speed Development Prescription 
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biological perspective, adaptations occur in a very specific manner to the demands imposed upon 

it. If contrasting stimuli are planned concurrently (speed vs. speed endurance), the downstream 

mechanisms creating adaptation will orient themselves toward more endurance type adaptations, 

leading to inferior pure speed adaptations (Wilson et al., 2012).  

Additionally, much like the strength training above, sprint programs often develop 

qualities in unison, with an emphasis-de-emphasis structure. Notice this is quite different than 

simultaneously emphasizing two abilities. The emphasis-de-emphasis approach may only 

employ one or two exposures (drills/opportunities) to a secondary or tertiary emphasis, whereas 

emphasizing two abilities will have equal or somewhat equal exposure two both emphasized 

abilities. Termed vertical integration, all training qualities are being met within the training 

period but to highly differing degrees (Francis, 1992). A quality may only compose 1% of the 

work done. In this way training becomes a blending of training stimuli with one primary 

emphasis and several much smaller de-emphasized stimuli, where the volume of work done 

differentiates emphasis from de-emphasis. 

Ultimately focusing on how absolute speed qualities can be advanced, it would seem 

counterintuitive to include slower runs, however, within the S2L approach slower work is 

employed. On days where restoration is the primary goal, longer distances of running termed 

tempo runs are prescribed. Tempo runs (Francis, 1992) are advised for the purposes of recovery. 

These runs are performed at an extensive tempo (65-75% maximum velocity), used to enhance 

recovery, work capacity, emphasize smooth/easy strides, and also may help enhance body 

composition (Francis, 1992). In conjunction findings from Suzuki et al. (2004) conclude light 

aerobic work generated a significant psychological effect and enhanced relaxation in collegiate 

rugby players. Leading to enhanced recovery and increased psychological states, this training is 
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theorized to potentiate higher intensity sessions leading to superior adaptations. Assisting in the 

development of endurance type capabilities, these runs are the antipode of maximal velocity 

sprinting. Seemingly counterproductive, these runs are interspersed throughout the S2L approach. 

Additionally, mid-section, upper-body work, and general calisthenics can be employed during 

rest periods of tempo runs to enhance endurance capacities. 

Director of Coaching for the British Athletic Federation from 1974-1994, Frank Dick 

concludes developing maximum sprinting speed rests squarely on developing high technical skill 

levels, improving relevant physical abilities, and progressing toward expressing this technique in 

training and competition (Dick, 1989). The S2L approach integrated with Conjugate Successive 

Sequencing fulfills both of these tenets. First, establishing sound technique is accomplished by 

administering shorter sprints to ensure critical accelerative abilities are established. This entails 

the ability to produce large propulsive forces from many different positions. As the body merely 

pushes in accordance with alignment and position of the limb and its musculature, irrespective of 

direction, accelerative mechanics depend on the proper position of limbs to direct forces in the 

optimal (propulsive) manner. Logically, this result can only be obtained from deliberate practice 

of acceleration through sensible training exposures administered by the coach. Second, physical 

abilities are improved through a scientifically backed plan with the ultimate goal of enhancing 

strength and explosive strength. As technical components improve, physical abilities improve 

assisting and bolstering each other along the way. The final section will detail the coupling 

mechanisms between Conjugate Successive Sequencing and the Short to Long approach. 
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Incorporating Short to Long & Conjugate Sequential Sequencing Strategies in a Seamless 
Manner 

Strength and the ability to produce force quickly are without a doubt some of the most 

important abilities in sport (Haff & Stone, 2015; Taber et al., 2016). Within the context of 

sprinting, accelerative abilities lay the foundation for future success (Tellez & Doolittle, 1984). 

Summating the previous sentences, these two properties form the basis from which Seamless 

Sequential Integration was founded and will be the targets for training and adaptation. 

While the development of speed is most critical to a sprinter, in early portions of speed 

development the coach and athlete can use slower velocities of movement to learn how to 

accelerate. Sprint velocity may be decreased as a result of resisted sprinting. Research 

corroborates not only that incline sprinting produces slower velocities but also does so with 

higher pushing times (Cross, 2016; Slawinski et al., 2008). This could be valuable to athletes’ 

refinement of acceleration. While investigating incline sprinting, Gottschall and Kram (2005) 

showed raising the ground closer to the athlete’s foot through incline sprinting decreased forces 

at impact and necessitates greater propulsive forces. In line with previous research by Rabita et al. 

(2015) and Morin et al. (2011) the importance of orienting forces properly was found to be a 

critical factor in accelerated sprinting success. Thus, incline sprinting is theorized as a way to 

enhance accelerative abilities (Bingham, Wagle, Fiolo, & DeWeese, 2016).  

Incline sprinting, coupled with an accumulation block of weight training, can suppress 

the capability to produce high values of RFD (Verhoshansky & Siff, 2009). Established in 

multiple works, RFD is of utmost importance for sprinting ability (Clark & Weyand, 2014; 

Slawinski et al., 2010) and chronically diminishing RFD is never a desired outcome. However, to 

pursue enhancements in RFD at more influential time points, suppression is needed. Investing in 



	
  
	
  

59 

muscular size early will allow for the potentiation of RFD later. A common misstep is to desire 

high values of RFD year round. With the former in mind, the decision to pair acceleration work 

is done with the knowledge of an increase in pushing time on the incline. Hypothetically, this 

allows the athlete to develop accelerative abilities at lower velocities through forces exerted over 

longer pushing timeframes, while RFD is suppressed. This pairing situates athletes in a position 

to develop necessary musculature for optimal force production in later phases, learn proper 

accelerative mechanics and produce large propulsive forces important for graduating toward 

higher level sprinting. An additional teaching opportunity resides in the multi-throws/jumps 

department. As Debaere et al. (2013) demonstrate the importance of proximal to distal firing of 

muscles and did not find evidence suggesting there is a stretch shortening cycle at the knee 

during a 10m sprint. Due to this finding, coaches may employ concentrically dominant jumping 

and throwing movements and progress toward movements heavily based on the stretch 

shortening cycle. Moreover, Shepherd (2008) indicates concentric strength expression is a key 

acceleration determinant. Using static start or concentrically emphasized throws or jumps may 

foster further enhancements in learning the skill of accelerating.   

 Moving away from concentrated loads on the incline and high volumes of work in the 

weight room, emphasis will shift in both areas. As indicated in Figures 2 & 3, sprint training 

moves toward higher velocity movements and weight training moves toward lower volumes and 

slightly higher velocities of movement when compared to the first block of training. The 

rationale behind using gradually faster movements is to allow the athlete to progressively 

advance to higher velocities of training while permitting the refinement of propulsive force 

output and accelerative mechanics. As suppression of RFD is still in effect from the previous 
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accumulation block of training, incline sprinting will still be employed to allow for the further 

enhancement of acceleration.  

 Indicating delivery of force magnitude and orientation the knee or height of the thigh is 

an important aspect commonly seen in upright portions of sprinting. Now desiring higher levels 

of inclination, this delivery is just as important during accelerated running. In a progressive study 

previously detailed Rabita et al. (2015) reports the ratio of force application technique is the key 

parameter in deciding performances differentiating highly trained athletes. Further, Morin et al. 

(2011) found force application technique as a determining factor in 100m sprint performance. 

Moreover, Morin and colleagues link this force application technique to the forward inclination 

of the body. As a result of sled towing Spinks, Murphy, Spinks, and Lockie (2007) found an 

increase in the trunk angle of a group of high caliber rugby, soccer and Australian football 

athletes. Sled towing was said to aid in the adoption of inclination angles close to that of a block 

start. With a further trunk or inclination angle, applying forces “down and back” will provide 

greater efficiency serving to boost sprint velocities.  

As any effective teacher or coach knows, no one method is all-inclusive and many 

methods serve as the best recipe. In accordance, sled towing is used as another training stimulus 

to allow for further refinement of accelerative abilities. It is recommended loads associated with 

a discrepancy of no more than 10% of sprinting velocity should be employed with sled towing. 

However, recent work provides evidence heavier loads may have beneficial impacts on 

acceleration (Cross, 2016). Further investigation on this topic is warranted.  

 Movement from accumulation to transmutation focused weight training which allows for 

the development of higher forces and more specific abilities to be trained. The athlete should 
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then begin to dissipate fatigue manifested in previous blocks of training. With the unveiling of 

fatigue and newfound musculature, higher levels of muscular force can be realized and used for 

the attainment of higher sprinting velocities. Several changes will begin to occur at this point, as 

a fundamental shift is occurring toward faster movements within speed development and in the 

weight room.   

 After fine-tuning the athlete’s ability to accelerate from many different training exposures 

and developing the athlete’s force production profiles to higher levels, it is time to move into the 

realization phase of training. This phase of training serves to “realize” or help the athlete grasp 

physical and technical abilities developed during early training periods. The emphasis on speed 

development moves toward maximal velocity sprinting and will progress onward to speed 

endurance work. As the emphasis on the track shifts toward the highest velocities seen thus far, 

training in the weight room will follow suit. Further reductions in volume and increased 

intensities will be prescribed in the weight room. Advanced weightlifting movements focusing 

on moving weights as quickly as possible will also be employed. High movement velocities will 

elicit improvements in RFD, which serve as the basis of sprinting success. Training at this time 

of the year represents the speed side of the force velocity continuum. As discussed before, high 

force movements will be prescribed. The majority of movements implemented will be very rapid 

in nature compared to slower renditions prescribed in earlier blocks.  

 The scope of this manuscript is to outline the process by which training decisions have 

been made. However, it is implausible, to provide a rationale for every decision made in the 

training plan. Now possessing the understanding of physiological underpinnings of sprinting 

speed and common methods used to elicit enhancement in speed, the coach can begin to 

implement this system. Mastery of all the above sections is not a desired outcome. Providing 
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coaches with knowledge so they may pursue sprinting excellence with athletes is plausible. 

Further, there is no evidence to suggest there are diminishing enhancements associated with the 

pursuit of greater sprint speeds. Coaches are urged to plan diligently, coach intelligently, and 

aspire to serve athletes to the best of their ability.  
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Outcomes of an Integrated Approach to Speed and Strength Training with an Elite-Level 

Sprinter 

Abstract 

The purpose of this study was to observe changes in sprint velocity, ground contact time, and 

peak force demonstrated by a competitive sprinter following an integrated approach to speed 

development and strength training. As part of an ongoing monitoring procedure the participant 

completed 20m sprint testing through an optical measurement system and isometric-strength 

testing before and after each phase of training. Sprint velocity, ground contact time and peak 

force were analyzed using Tau-U, smallest worthwhile and percent change statistics. Results 

indicate sprinting velocity statistically improved while changes in peak force were practically 

significant and ground contact time remained trivial throughout the investigation. Results lead 

investigators to suggest the implementation of a periodized approach merging technical skill and 

the development of physical abilities. The integrated approach provided a transfer of training 

effect and may have been the primary source of sprint enrichment. 

Keywords: Speed, Strength, Short to Long, Seamless Sequential Integration, Elite 

Introduction 

Coaches and practitioners around the world seek to gain insights on how to strategize, 

structure, and devise training programs to enhance sprint speed. The argument can then be made 

that sprinting speed is the most sought after ability in sport. (Bellon, 2016; Morin, Edoudard, & 

Samozino, 2011; Nagahara, Naito, Morin, & Zushi, 2014; Rumpf, Cronin, & Schneider, 2014).  

Sprinting can be defined as an un-paced bi-pedal cyclical movement, executed at maximal 

intensity, and commonly lasting 15 seconds or less. (Ross, Leveritt, & Riek, 2001).  Despite the 

time constraint within this strict definition, the maximal intensity associated with longer events 



	
  
	
  

65 

like the 200 and 400 m races, lends credence to their classification as sprint events. Furthermore, 

evidence indicates the 60 second mark as the threshold for an even split between aerobic and 

anaerobic contributions to maximal sustained efforts (Stone, Sands & Stone, 2007). Evidence 

also leads investigators to believe sprinting speed in humans is largely independent of substantial 

aerobic contributions under 60 seconds (Weyand, Lee, Martinez-Ruiz, Bundle, Bellizzi & 

Wright, 1999). This would create a situation where locomotor activities completed in under 60 

seconds should be considered sprinting events.   

In direct pursuits of speed, which determine the winner as the athlete covering a 

respective distance in the shortest amount of time, it is evident that sprinting abilities are strongly 

related to an athletes maximal running velocity (Bruggeman & Glad, 1990; Mac'kala, 2007; 

Mann, 2013; Volkov & Lapin, 1979;). Attaining maximal velocity is heavily dependent upon 

many factors including: the ability to produce large mass-specific forces (Delecluse, 1997; Seitz, 

Reyes, Tran, Villarreal & Haff, 2014; Weyand, Sternlight, Bellizzi & Wright, 2000), ability to 

produce force rapidly (Clark & Weyand, 2014), ability to coordinate movement at high velocities 

(Missitzi, Geladas & Klissouras, 2004), inter-muscular coordination (Coh, Zvan, Velickovska, 

Zivkovic & Gontarev, 2016), technical ability (Morin et al., 2011; Rabita et al., 2015), and most 

notably, genetics (Eynon et al., 2013; Lucia, Moran, Zihong, & Ruiz, 2010; MacArthur & North, 

2004; Scott et al., 2009; Wang et al., 2013).  

The acceleration phase has been known to dictate the successfulness of the ensuing 

maximal velocity phase (Van Ingen Schenau, Koning & de Groot, 1994). Evidence suggests 

even the fastest 100m ever run was completed while decelerating near the finish (Krzysztof & 

Mero, 2016). Emphasizing a steadfast ability to accelerate and delaying maximal velocity serves 

to minimize deceleration in the latter portions of the sprint. Further, the set up for and execution 
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of the sprint start lays the foundation for the proceeding phases of the sprint (Coh, Jost, Skof, 

Tomazin, & Dolenec, 1998; Milanese, Bertucco, & Zanacanaro, 2014). Without proper 

execution of and transition between previous sprint phases, the maximal velocity phase may 

prove to be insufficient and leave something to be desired. Stressing the importance of a holistic 

approach in sprinting, one cannot focus solely on one phase of the sprint but must configure a 

way in which all phases of the sprint are learned in sequential order to reinforce sprint specific 

physical literacy as well as technical proficiency.  

 Bolger, Lyons, Harrison and Kenny (2015) expose a need for longitudinal observations of 

competitive sprinters and the resistance training protocols used to enhance performance. 

Utilizing a novel approach, seamless sequential integration (DeWeese, Sams, & Serrano, 2014a; 

2014b), strives to advance an athletes’ technical skill while simultaneously developing the 

physical abilities underpinning technical prowess. Therefore, the primary purpose of this study 

was to observe changes in sprint velocity, ground contact time, and peak force in an elite-level 

sprinter following an integrated approach to speed development and strength training.  

Methods 

Participant 

The athlete was a professional U.S.A. Track & Field athlete competing in the 400m (age: 

28 years, body mass: 89.4kg, height: 182cm). Qualifying as elite, the athlete appeared in multiple 

World Championships and Olympic games. Accolades include Olympic medalist, World Indoor 

Championships medalist, and multiple NCAA Championship Qualifying appearances. The 

athlete has been competing in track and field for approximately 10 years and has been training 4-

7 times per week. Accolades aside, the subject of this endeavor should be considered elite, as set 

by the standards of Sides (2014). The study was approved by the universities institutional review 
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board.

Block 3- Maximal 
Strength 
Sets/Reps: 5x5, 3x5, 3x3 
Relative Intensity: 85-
92.5% 
Exercises Utilized:  
Squats, Push Press, Incline 
Bench Press, Mid-thigh 
Pull, Clean Pull, Stiff-
legged Deadlift, Pull Up, 
Mid Thigh Clean, Step Up 

Block 4- Strength-
Speed 
Sets/Reps: 5x3, 3x3, 3x2 
Relative Intensity: 82.5-
95% 
Exercises Utilized:  
Squats, Push Press, Split 
Squat, Bench Press, Step 
Up, Clean Pull, Power 
Clean, Stiff-legged 
Deadlift, Pull Up, 
Countermovement Shrug, 
Split Squat 

Block 5- Speed-
Strength 
Sets/Reps: 4x3, 3x3, 3x2 
Relative Intensity: 80-
90% 
Exercises Utilized:  
Squats, Push Jerk, Step Up, 
Bench Press, Power Clean, 
Countermovement Shrug, 
Stiff-legged Deadlift, Push 
Press 

Block 1- Strength 
Endurance 
Sets/Reps: 3x10 
Relative Intensity: 85-
92.5% 
Exercises Utilized:  
Squats, Clean Grip 
Shoulder Press, Lunges, 
Bench Press, Pull to knee, 
Clean Grip Shoulder Shrug, 
Stiff-legged Deadlift, Pull 
Ups, Incline Bench Press, 
Snatch Grip Shoulder 

Block 2- Basic Strength 
Sets/Reps: 3x5 
Relative Intensity: 82.5-
92.5% 
Exercises Utilized:  
Front Squats, Clean Grip 
Shoulder Press, Split Squat, 
Incline Bench Press, Mid-
thigh Pull, Clean Pull, 
Glute Ham Raise, Bent-
over Row (Barbell), Squat, 
Bench Press Reverse 
Hyper,  

Block 1A- Return to 
Fitness 
Sets/Reps: 3x5 
Relative Intensity: 82-
85% 
Exercises Utilized:  
Squats, Clean Grip 
Shoulder Press, Lunges, 
Bench Press, Pull to knee, 
Clean Grip Shoulder Shrug, 
Stiff-legged Deadlift, Pull 
Ups, Incline Bench Press, 
Snatch Grip Shoulder 

Figure 1. Strength Training Prescription 
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Procedure  

The athlete was tested before the start of the first phase of training, and was tested after the 

proceeding phases of training for performance measures. These tests included 20 meter sprints 

from a block start and an isometric mid thigh pull. The sprint testing took place on Mondays, 

with the isometric mid thigh pull performed on Wednesdays of the same week. The testing 

protocol was identical for each time point. After the participant performed the standard warm up, 

three 20m accelerations were performed. The sprint trials were conducted on a synthetic track in 

an indoor athletic stadium. The participant wore his own training attire and spikes. 

 

Block 4 
Emphasis 
1. Max Velocity 
2. Introduction Speed 
Reserve 
Method: Block Starts, 
Open Accelerations, 
Acceleration Holds, Fly-
ins, Fly-Float-Fly, Race 
Simulation, Speed Reserve 
Runs 

Block 5 
Emphasis 
1. Speed Reserve 
2. Max Velocity 
Method: Block Starts, 
Open Accelerations, 
Acceleration Holds, Fly-
ins, Fly-Float-Fly, Race 
Simulation, Speed Reserve 
Runs 

Block 1 
Emphasis 
1. Acceleration 

  
Method: Incline Sprinting 

Block 2 
Emphasis 
1. Refine Acceleration 
2. Transition 
Method: Incline Sprinting, 
Sled Pulls, Lower inclines, 
Low start positions, Open 
Accelerations 

Block 3 
Emphasis 
1. Refine Transition 
2. Introduction Max 
Velocity  
3. Refine Acceleration 
Method: Open 
Accelerations, 
Acceleration Holds, Fly-
ins, Sled Pulls, Low start 
positions, Open                    
Accelerations 

Figure 2. Speed Development Prescription 
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Sprinting Assessment 

Sprint metrics were collected using the OptoJump Next system (Microgate, Bolzano, Italy). This 

measurement system utilizes 32 infrared LED’s sampling at 1000 Hz encased within transducer 

and receiving bars (1 meter each) to collect data. Three sprint trials were used in the analysis of 

performance of T1-T3 and four trials were used in T4 and T5. Data from sprinting trails were 

used to evaluate ground contact time and sprinting velocity. 

Strength Assessment 

The isometric mid thigh pull tests were performed on dual force plates (RoughDeck HP, Rice 

Lake WI) and sampled at a frequency of 1000Hz. The data was analyzed using customized 

LabView software, a program used specifically for analyzing data from these force plates.  

During the isometric mid thigh pull the athlete was placed into the ‘power position’ and pre-

determined bar height to standardize testing sessions. The participant is familiar with this 

position from the various exercises performed containing this position. The athlete was taken 

through two warm up trials at 50% and 75%. The next two trials were a 100% maximal effort 

with strong encouragement from the testing staff. The athlete’s hands were taped to the 

immovable bar to negate hand strength from being a limiting factor in the performance of the 

pull. Methodology is similar to what has been previously suggested by Kraska et al. (2009).  

Statistical analysis 

Tau-U effect size statistics (0-100%) were calculated to determine overlap and improvement 

between the phases of training (Parker, Vannest, Davis, & Sauber, 2011). Tau-U effect sizes can 

be interpreted as questionable (X ≤ 65), effective (66 ≤ X ≤ 92) & very effective (X ≥ 93) (Rakap, 

2015). Smallest worthwhile change (SWWC) (smallest meaningful change) was calculated for 
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the dependent variables by multiplying the pooled standard deviation of all monitoring sessions 

by 0.3 (Halperin, Hughes, & Chapman, 2016; Hopkins, 2004). Percent change was configured 

for the dependent variables between the baseline measurement and the final monitoring session. 

Statistical significance for all variables was set at (p ≤ 0.05). Tau-U calculations were completed 

utilizing a specialized web based calculator for single case research designs (Vannest, Parker, 

Gonen, & Adiguzel, 2016). All other calculations were calculated utilizing Microsoft Excel 2010 

version 14 (Microsoft Corporation, Redmond, WA, USA).  

Results 

Sprinting Velocity 

Throughout the duration of the training period sprinting velocity increased. Terminal velocity 

significantly increased at T3 and T5 (p=0.029, 0.008), while T4 nearly reached statistical 

significance (p=0.051). After initially decreasing below the SWWC, sprinting velocity increased 

and remained above the SWWC for time points T3-T5. Measured by Tau-U effect size the 

magnitude of change was largest for T5 (ES=1.00), followed by T3 (effective, ES=0.88), T4 

(effective, ES=0.73) and T2 (ineffective, ES=0.09).

	
  
Figure 3. 20m Performance Comparison 
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Ground Contact Time 

Ground contact times (GCT) remained relatively unchanged throughout the training period. 

Magnitude of change were all within the ineffective range T2 (ES= -0.22), T3 (ES= -0.11), T4 

(ES= -0.00) and T5 (ES= -0.16). All testing sessions remained within the SWWC, T3 (p=0.82) 

was the exception, after which GCT returned to within the limits of the SWWC. No 

performances reached statistical significance.  

 

Isometric Mid-Thigh Pull  

Isometric force production increased throughout the monitoring period and showed a large 

magnitude of change from baseline (T1) to time point 4 (T4). With an effect size of 1.00, there 

was a meaningful but not statistically significant (p=0.052) difference between T4 and baseline 

measures. The first three testing time points (T1-T3) remained within the SWWC while the last 

time point (T4) exceeded it. 

 

 T1 
(Baseline 
Testing) 

T2 
 

T3 T4 T5 T5-T1 
% Change 

Mean 
Velocity (m/s) 

9.24m/s 9.14m/s 9.59m/s 9.56m/s 9.55m/s (+3.35%) 

Terminal 
Velocity (m/s) 

9.41m/s 9.27m/s 9.9m/s 9.81m/s 9.72m/s (+3.29%) 

Mean GCT 
(s) 

0.0976s 0.0970s 0.0963s 0.0977s 0.0975s (-0.61%) 

Terminal 
GCT (s) 

0.0960s 0.0960s 0.0900s 0.0940s 0.0940s (-2.08%) 

Mean 
Isometric 

Peak Force 
(N) 

3104.70 3124.41 3137.76 3613.75 DNP (+16.39%) 

Isometric 
Peak Force 

(N) 

3215.49 3222.81 3153.49 3685.67 DNP (+14.6%) 

Table 1. Performance outcomes from the monitoring process 
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Discussion 

The purpose of this study was to observe changes in sprint velocity, ground contact time, and 

peak force in an elite-level sprinter following an integrated approach to speed development and 

strength training.  

The athlete displayed high levels of sprinting success in competitive history and when 

compared to other similarly talented athletes (Figure 3.). After an initial regression noted in 20m 

sprint velocity, performance steadily increased. Many factors could be responsible for the initial 

decline in sprint performance. This may be due to the novel means and methods of a new 

training environment or the temporary downfall of explosive strength needed for sprinting 

(Verhoshansky & Siff, 2009) resultant from high training volumes relative to the athlete’s 

physical condition. It is probable that a combination of both the above factors played a role in the 

decreased performance from the initial testing session. 

Following a concentrated training block of acceleration, the athlete attained the highest 

running velocity throughout the study in T3. This was likely due to the focus on how the sprinter 

should properly apply forces to the ground, as orientation of forces has been shown to 

differentiate elite from sub-elite sprinters in 40m (Rabita et al., 2015). This was conveyed 

through many different medicine-ball throws, technical drills and sprints concentrating on 

powerful movements emphasizing horizontal translation. 

Terminal velocity and mean velocity increased (3.29% & 3.35%) by the end of the 

investigation, and as time progressed, sprinting velocity improved as a result of training. This is 

likely due to the incorporation of retaining stimuli allowing the athlete to further refine his 

accelerative and maximal velocity abilities while focusing on maintaining velocity for longer 
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durations. Additionally, follwing a periodized training plan, volume of work tapered off and 

focused on applying force rapidly through more ballistic activities, which is previously shown to 

elicit positive improvements in RFD (Van Cutsem, Cuchateau, & Hainaut, 1998). While RFD 

supports short and long sprint success, the implementation of a short to long speed development 

approach seems to be more appropriate when compared with others. (DeWeese, Williams, Sams, 

& Bellon, 2015; DeWeese, Bellon, Magrum, Taber, & Suchomel, 2015). 

While supporting elite track and field athletes, sport scientists and coaches should focus 

on enhancements less than 1%. Enhancements observed in this endeavor exceed what is deemed 

as the smallest worthwhile change by Hopkins (2005). Therefore, authors conclude 

enhancements in sprinting velocity not only reached statistical significance, but most importantly, 

allows coaches to interpret the outcomes of training. 

Ground contact times showed a reduction at T3, but thereafter returned similar to baseline 

measures and remained relatively stable throughout the study. Terminal GCT and mean GCT 

showed reductions (2.08%, 0.61%) as training progressed to longer duration sprints. To no 

surprise the shortest GCT occurred in T3 alongside the highest terminal and mean sprinting 

velocity, just as Mann (2013) indicates faster sprinters spend less time on the ground. It is 

desirable to see GCT reduced to an optimal range, especially as sprint distances increase. This 

may be due to the focus of training shifting to low volume and high rates of force development in 

the weight room paired with longer bouts of sprinting stimuli. While the emphasis in sprinting 

progress to longer distances, the emphasis in the weight room remains improving RFD, as 

volume accumulation is the main decrement in RFD. Mitigating the accumulation of work is a 

way to ensure RFD is either enhanced or maintained. Should volume go unmanaged, undesirable 

fiber type transition and mitochondrial biogenesis may occur (Coffey & Hawley, 2007) leading 
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to a suppressed ability to generate RFD. While RFD underpins sprinting performance, this may 

lead to a decrease in sprint performance. Periodized plans serve to accentuate physical attributes 

to preserve and even enhance physical abilities for prioritized competitions. 

Interestingly enough, while the training produced increased velocities GCT did not reach 

statistical or practical significance. While brief ground contacts are the aspiration of many sprints 

coaches, without the ability to produce sufficient forces during these brief time periods, velocity 

is lost. With the aforementioned increase in sprinting velocity and maintenance of GCT, the 

authors postulate the improvements in speed can be attributed to an enhanced ability to produce 

mass-specific forces in similar timeframes. Further, this would mean an increase in the rate at 

which force is produced, which has been previously shown to underpin sprinting performance 

(Clark & Weyand, 2014; Weyand et al., 2000). Similar to findings from Harris et al. (2000) 

strength and speed parameters were improved using a periodized training program. This 

sequential model is founded upon findings from Bodine et al. (1982) who concluded a muscles 

force capability is proportional to it’s cross sectional area (CSA). Therefore, a special sequence 

of training stimuli aimed at enhancing CSA may provide further enhancements in force and rapid 

force production. 

Peak isometric force and mean peak isometric force eluded any practical change until the 

final testing session (T4). During the final testing session mean isometric peak force (+16.39%) 

and peak force (+14.6%) increased to a practically significant degree (ES 1.00) but remained 

statistically insignificant (p=0.052). This may be due to the lag effect of training otherwise 

known as the delayed training effect (Stone, Stone & Sands, 2007). It may also be noted, 

increases in strength did not occur simultaneously with increases in speed and proved to be 

delayed just as was found by Stone et al. (2003). This could provide support to suggest the 
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enhancement of sprint velocity may come initially through neurological adaptations (Ross, 

Leveritt, & Riek, 2001) and may also continue to provide further positive adaptations when more 

physiological adaptations occur allowing enhanced force and rate of force production (Stone et 

al., 2003). 

Summarizing the findings suggest that RFD capability improved as higher velocities 

were attained even though ground contact times showed little alteration. Increases in strength, as 

observed in the isometric mid-thigh pull, may have allowed the athlete to increase the rate at 

which force is produced.  

Application 

The results of this endeavor concluded with enhancement of sprinting velocity and isometric 

force production. Sprint velocity is primarily dictated by the forces applied to the ground, and as 

force production increases so does velocity. Further, the brevity of footfalls displayed by elite-

level sprinters does not allow for maximal force production. Therefore, the ability to produce 

large amounts of force in a very small time window (RFD) becomes a major contributor to 

sprinting success. RFD can be enhanced through a multitude of means and methods, but can be 

developed in simultaneous fashion to sprint technique. The synchronized development allows the 

paired enhancement of both the ability to produce and utilize RFD in a manner which supports 

greater sprint ability.  

These findings lead investigators to suggest the implementation of similar means for 

simultaneous development of strength and speed. Implementing a similar program does not 

ensure elite-level attainment, however, replicating similar tactics may allow for the enhancement 
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of relative sprint speed. Practitioners are urged to think critically and begin to optimize a training 

plan for their specific situation utilizing the information offered.   
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CHAPTER 4	
  

SUMMARY AND FUTURE INVESTIGATIONS 

 The primary purpose of this thesis was to observe changes in sprint velocity, ground 

contact time, and peak force demonstrated by a competitive sprinter following an integrated 

approach to speed development and strength training. A secondary purpose was to provide 

coaches with a detailed synergistic approach to speed and strength training, termed Seamless 

Sequential Integration. 

 Observations in sprint velocity and peak isometric force demonstrated practical and 

statistically significant enhancements. Performance improvements were thought to be a product 

of increases in strength or ability to produce force resulting from a specialized sequence of 

training similar to Harris et al. (2000). Previously shown to be highly correlated with strength 

(Taber et al., 2016), the ability to produce force quickly (RFD) is a foundational element in 

sprinting performance (Clark & Weyand, 2014; Rabita et al., 2015). 

 While heightened physical abilities will enhance athletes’ capacity to exert force, this by 

itself does not ensure improvements in technical movements. Thus, Seamless Sequential 

Integration (SSI) places emphasis on developing skilled movement and works to refine 

movement prowess with progressive physiological adaptations over time. Recently found, a 

dichotomy between elite and sub-elite sprinters, Rabita et al. (2015) highlight the importance of 

orientation of force. Demonstrating body segment positioning dictates force application, Kugler 

and Jansen (2010) clarify orientation of force is a function of athletes’ ability to comprehend, 

replicate, and achieve desirable positions. Therefore, SSI serves to construct a curriculum to: 

enhance awareness and achievement of positions, orient forces accordingly, realize higher sprint 

velocities, generate a speed reserve, and delay speed decay. In this analysis the sprinter was able 



	
  
	
  

80 

to attain higher and more consistent velocities, leading the authors to postulate body positions 

and force orientation improved over the course of the analysis.  

While there was no practical increase in isometric force until the last time point, there 

were significant improvements in sprinting velocity as early as testing time point three. This may 

be due to the athletes increased ability to direct forces into the ground in a more advantageous 

manner, resulting from a speed development approach geared toward enhancing accelerative 

abilities. Evidence from Plautz, Milliken, and Nudo (2000) suggest motor learning is a 

prerequisite related to motor performances. Jensen, Marstrand, and Nielsen (2005) suggest 

strength training with simultaneous motor learning can lead to improved muscular coordination. 

When combined coordination of skillful movements and enhanced physical abilities allow for 

greater sprint performances, as force generation is partially determined by muscular coordination 

(Carroll, Riek, & Carson, 2001). Increases in sprint speed seen at later time points may be 

attributed to a realization of explosive ability. Early results may be justified by learning and 

refinement of a skill and later results substantiate increased explosive ability through which skill 

was bolstered further.  

Results coincide with a common phenomenon seen in youth and inexperienced athletes 

where early adaptations are believed to be rooted in neural adaptations and later adaptations are 

understood as manifestations of physical maturation (Myer, Lloyd, Brent, & Faigenbaum, 2013; 

Verhoshansky & Siff, 2009). Evidence suggests learning: creates more efficient movements, 

requires less neural activation, and generates more force through a multitude of different 

mechanisms (Carroll, Riek, & Carson, 2001).  

While all movement originates in the central nervous system, a learning rich environment 

serves to accelerate communication from the central nervous system to the muscular system. 



	
  
	
  

81 

Movement may only occur after an action potential reaches the neuromuscular junction, 

eventually causing cross-bridges within the muscle to be formed and force generated. 

Subsequently, after this potential reaches the muscle, it is the physiological profile (muscle fiber 

type, fiber distribution, pennation angle, fascicle length, etc.) that determines how quickly force 

is produced. Therefore, the emphasis on learning a skill supports quicker neurological 

communication, while sequenced weight training allows heightened physiology to deliver force 

at a greater rate after the signal arrives at the muscle.  The findings of this inquiry support the use 

of SSI with an elite-level sprinter. 

Enhancing sprinting speed should therefore focus on skillful force application where 

early exposures are meant to teach the athlete how to position his or her body to optimally 

transmit forces into the ground. Simultaneously, the coach will be urged to enhance the physical 

abilities of the athlete through strength training. If the athlete is taught how to apply forces 

properly while simultaneously improving physical abilities, these two facets are believed to 

compound on each other and promote additional enhancements. Approaches focusing on 

segregated training means may cease to provide long term adaptations after neural adaptations 

have taken place. An integrated approach over the course of a career may yield gains for long 

durations as physical abilities will supplant the athletes technically sound skillset.  

 Future investigations should use similar designs and training regimens but employ them 

over longer time periods. Observations past 20m would be optimal and although kinematic data 

is useful, kinetic data collected would be more beneficial.  
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APPENDIX A: ETSU Institutional Review Board Approval 

 

 
 
 

Office for the Protection of Human Research Subjects x Box 70565 x Johnson City, Tennessee 37614‐1707  
Phone: (423) 439‐6053 Fax: (423) 439‐6060 

 

 
 

 
Accredited Since December 2005 

 
IRB APPROVAL – Initial Expedited Review 

 
October 5, 2016 
 
Eric Magrum  
 
Re: A look into the training and outcomes of an Elite level sprinter: A Case Study 
IRB#: c0916.18sw 
ORSPA #:  
 
The following items were reviewed and approved by an expedited process: 

x New protocol submission xForm, Pertinent literature, Eric Daniel Magrum VITA, Collection 
Sheet Sprints, Collection Sheet Iso-Pull 
 

On October 4, 2016, a final approval was granted for a period not to exceed 12 months and will 
expire on October 3, 2017. The expedited approval of the study and requested changes will be 
reported to the convened board on the next agenda. 
 
The study has been granted a Waiver or Alteration of Informed Consent under category 45 CFR 
46.116(d). 
 
The research involves no more than minimal risk to the participants as the study is only analysis of 
retrospectively collected data from monitoring that is located in the research repository and the 
athlete already gave consent to have his data put into the repository for research purposes. The 
waiver or alteration will not adversely affect the rights and welfare of the subjects as the study is only 
analysis of retrospectively collected data from monitoring that is located in the research repository 
and the athlete already gave consent to have his data put into the repository for research purposes.. 
The research could not practicably be carried out without the waiver or alteration as the PI does not 
have contact with the athlete and the athlete is no longer at ETSU. Providing participants additional 
pertinent information after participation is not appropriate as there is no information to share with the 
participant whose data will be analyzed. 
 
Projects involving Mountain States Health Alliance must also be approved by MSHA following 

IRB approval prior to initiating the study. 
 
Unanticipated Problems Involving Risks to Subjects or Others must be reported to the IRB (and VA 
R&D if applicable) within 10 working days. 
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Proposed changes in approved research cannot be initiated without IRB review and approval. The 
only exception to this rule is that a change can be made prior to IRB approval when necessary to 
eliminate apparent immediate hazards to the research subjects [21 CFR 56.108 (a)(4)].  In such a 
case, the IRB must be promptly informed of the change following its implementation (within 10 
working days) on Form 109 (www.etsu.edu/irb).  The IRB will review the change to determine that it is 
consistent with ensuring the subject’s continued welfare. 
 
Sincerely, 
Stacey Williams, Ph.D., Chair 
ETSU Campus IRB 
 
cc:  Brad DeWeese 
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APPENDIX C: Sample Data from Isometric Mid-Thigh Pull 

  

Athlete Testing+date Analyzed+by mPF+(N) mT+to+PF+(ms)mF50+(N) mF90+(N)

9.14.15 EDM 3104.703 4179 1663.724 2177.599

mF200+(N) mF250+(N) mRFD50+(N/s)mRFD90+(N/s)mRFD200+(N/s)mRFD250+(N/s)mRFDPF+(N/s)

2525.667 2590.236 9679.174 11087.036 6729.506 5641.881 446.659

mImpulse50+(N*s)mImpulse90+(N*s)mImpulse200+(N*s)mImpulse250+(N*s)mImpulsePF+(N*s)Trial+# FP+offset

67.99 146.541 407.138 535.481 11526.926 1 O9.784

AO1 AO2 Mean+force+(N)PF+(N) Min.+Force+(N)T+to+PF+(ms) F50+(N)

16361 23240 2577.787 3215.492 573.046 4228 1617.643

F90+(N) F200+(N) F250+(N) RFD50+(N/s) RFD90+(N/s) RFD200+(N/s)RFD250+(N/s)

2092.701 2537.743 2627.157 12538.19 12244.077 7735.047 6545.692

RFDPF+(N/s) Impulse50+(N*s)Impulse90+(N*s)Impulse200+(N*s)Impulse250+(N*s)ImpulsePF+(N*s)Trial+#

516.753 61.621 138.528 385.537 515.371 12404.116 2

FP+offset BO1 BO2 Mean+force+(N)PF+(N) Min.+force+(N)T+to+PF+(ms)

O9.784 61494 68513 2365.821 2993.913 663.225 4130

F50+(N) F90+(N) F200+(N) F250+(N) RFD50+(N/s) RFD90+(N/s) RFD200+(N/s)

1709.805 2262.497 2513.59 2553.315 6820.158 9929.995 5723.965

RFD250+(N/s)RFDPF+(N/s) Impulse50+(N*s)Impulse90+(N*s)Impulse200+(N*s)Impulse250+(N*s)ImpulsePF+(N*s)

4738.071 376.564 74.358 154.553 428.739 555.591 10649.736

FP1+slope FP1+interceptFP2+slope FP2+interceptNote

8385.654 3.284 7450.952 O8.832
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APPENDIX D: Sample Data from Optojump 

 

 

  

Test Date Time # L/R TFlight TContact Height Pace[step/s] Pace[step/m] Step
Gait<Test<=<Reactime9/28/2015 11:12:07<AM External<trigger<START<<NCL 142
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 1 L 0.052 0.184 0.3 4.24 254.24 116
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 2 R 0.085 0.164 0.9 4.02 240.96 125
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 3 L 0.095 0.133 1.1 4.39 263.16 142
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 4 R 0.089 0.124 1 4.69 281.69 146
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 5 L 0.099 0.127 1.2 4.42 265.49 167
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 6 R 0.106 0.119 1.4 4.44 266.67 171
Gait<Test<=<Reactime9/28/2015 11:12:07<AM Split<1
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 7 L 0.114 0.109 1.6 4.48 269.06 179
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 8 R 0.112 0.101 1.5 4.69 281.69 185
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 9 L 0.114 0.109 1.6 4.48 269.06 190
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 10 R 0.119 0.097 1.7 4.63 277.78 197
Gait<Test<=<Reactime9/28/2015 11:12:07<AM 11 L 0.115 0.105 1.6 4.55 272.73 207
Gait<Test<=<Reactime9/28/2015 11:12:07<AM External<trigger<STOP
Gait<Test<=<Reactime9/28/2015 11:08:33<AM External<trigger<START<<NCL 143
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 1 L 0.042 0.195 0.2 4.22 253.16 117
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 2 R 0.076 0.175 0.7 3.98 239.04 128
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 3 L 0.088 0.14 0.9 4.39 263.16 139
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 4 R 0.086 0.124 0.9 4.76 285.71 152
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 5 L 0.096 0.134 1.1 4.35 260.87 168
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 6 R 0.107 0.119 1.4 4.42 265.49 174
Gait<Test<=<Reactime9/28/2015 11:08:33<AM Split<1
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 7 L 0.115 0.112 1.6 4.41 264.32 183
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 8 R 0.101 0.103 1.3 4.9 294.12 180
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 9 L 0.121 0.111 1.8 4.31 258.62 197
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 10 R 0.109 0.096 1.5 4.88 292.68 190
Gait<Test<=<Reactime9/28/2015 11:08:33<AM 11 L 0.121 0.106 1.8 4.41 264.32 208
Gait<Test<=<Reactime9/28/2015 11:08:33<AM External<trigger<STOP
Gait<Test<=<Reactime9/28/2015 11:04:07<AM External<trigger<START<<NCL 141
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 1 R 0.063 0.18 0.5 4.12 246.91 111
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 2 L 0.09 0.147 1 4.22 253.16 125
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 3 R 0.094 0.132 1.1 4.42 265.49 138
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 4 L 0.098 0.124 1.2 4.5 270.27 151
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 5 R 0.103 0.125 1.3 4.39 263.16 159
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 6 L 0.115 0.112 1.6 4.41 264.32 174
Gait<Test<=<Reactime9/28/2015 11:04:07<AM Split<1
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 7 R 0.113 0.113 1.6 4.42 265.49 178
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 8 L 0.117 0.1 1.7 4.61 276.5 181
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 9 R 0.111 0.109 1.5 4.55 272.73 184
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 10 L 0.118 0.1 1.7 4.59 275.23 197
Gait<Test<=<Reactime9/28/2015 11:04:07<AM 11 R 0.12 0.105 1.8 4.44 266.67 200
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