Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

Т. А. ДЕНИСЕНКО, Л. Н. МАРЧЕНКО, И. В. ПАРУКЕВИЧ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методический комплекс

В трех частях

Часть 3
Теория функций
комплексной переменной

Гомель УО «ГГУ им. Ф. Скорины»

2010

УДК 517 (075.8) ББК 22. 161 я 73

Д 332

Рецензенты:

Л. П. Авдашкова, доцент, кандидат физико-математических наук;

Д. П. Ющенко, доцент, кандидат физико-математических наук,

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Денисенко, Т. А.

Д 332 Математический анализ: учебно - методический комплекс для студентов физического факультета: Ч.3 Теория функций комплексной переменной / Т. А. Денисенко, Л. Н. Марченко, И. В. Парукевич; М-во образ. РБ, Гомельский гос.ун-т им. Ф. Скорины. – Гомель: ГГУ им.Ф.Скорины, 2010. – 206 с.

Третья часть учебно-методического комплекса содержит материал по темам гармонический анализ, функции комплексной переменной, операционное исчисление, которые являются составляющими учебной программы дисциплины «Математический анализ» в третьем семестре на физическом факультете.

Для студентов и преподавателей физического факультета вуза.

УДК 517 (075.8) ББК 22. 161 я 73

- © Денисенко Т. А., Марченко Л. Н., Парукевич И. В., 2009
- © УО «Гомельский государственный университет им. Ф. Скорины», 2010

Содержание

Введение	4
Учебная программа курса «Математический анализ»	5
Тематический план	8
Краткий лекционный курс	
Раздел 1 Гармонический анализ	10
Тема 1 Функциональные пространства	10
Тема 2 Ряды Фурье в гильбертовых пространствах	12
Тема 3 Ряды Фурье по тригонометрической системе	16
Вопросы для самоконтроля	21
Раздел 2 Функции комплексной переменной	23
Тема 1 Функции комплексной переменной	23
Тема 2 Аналитические функции	32
Тема 3 Конформное отображение	35
Тема 4 Интегрирование функции комплексной переменной	38
Тема 5 Интегральная формула Коши	42
Тема 6 Ряды в комплексной плоскости	46
Тема 7 Ряды Тейлора и Лорана	52
Тема 8 Классификация изолированных особых точек ана-	
литической функции	55
Тема 9 Вычеты	58
Тема 10 Приложение вычетов	61
Вопросы для самоконтроля	65
Раздел 3 Операционное исчисление	69
Тема 1 Преобразование Лапласа	69
Тема 2 Восстановление оригинала по изображению	73
Тема 3 Приложения операционного исчисления	77
Вопросы для самоконтроля	84
Задания для практических занятий	86
Раздел 1 Гармонический анализ	86
Раздел 2 Функции комплексной переменной	96
Раздел 3 Операционное исчисление	144
Тестовые задания для итогового контроля	166
Деловые игры	169
Задания к контрольным работам	171
Примерный перечень вопросов экзамену	175
Типовые задачи к экзамену	178
Индивидуальные домашние задания	181
Литература	206

Введение

Данное издание является третьей частью учебно-методического комплекса «Математический анализ» для физических специальностей. В нем рассматривается дифференциальное и интегральное исчисление функции комплексной переменной, ряды Тейлора и Лорана, вычеты и их приложения, элементы операционного исчисления.

Структура учебно-методического комплекса аналогична предыдущим частям:

- примерный тематический план;
- краткий лекционный курс;
- вопросы для самоконтроля;
- примерные задания к практическим занятиям с решениями типовых примеров;
 - деловые игры для проведения СУРС;
- примерные задания контрольных работ и тестовые задания для рубежного контроля;
 - примерный перечень вопросов и задач к экзамену;

Учебно-методический комплекс предназначен для организации учебного процесса по курсу «Математический анализ» на физическом факультете университета. Изложенные вопросы разделов математического анализа могут быть использованы студентами для самостоятельной подготовки по данному предмету.

Учебная программа курса «Математический анализ»

Раздел 1 Гармонический анализ

Тема 1 Функциональные пространства

Метрические пространства. Линейные пространства. Норма функции. . Скалярное произведение функций. Свойства скалярного произведения. Гильбертовы пространства. Ортогональные системы функций. Последовательности тригонометрических многочленов.

Тема 2 Ряды Фурье в гильбертовых пространствах

Приближение функций в среднем. Экстремальное свойство коэффициентов Фурье. Неравенство Бесселя. Равенство Парсеваля. Полнота и замкнутость тригонометрической системы. Сходимость рядов Фурье. Равномерная сходимость ряда Фурье. Сходимость в среднем. Почленное интегрирование и дифференцирование рядов Фурье.

-Тема 3 Ряды Фурье по тригонометрической системе

Основная тригонометрическая система. Тригонометрические ряды Фурье. Признаки сходимости тригонометрических рядов Фурье. Тригонометрические ряды Фурье для четных и нечетных функций. Разложение непериодических функций в тригонометрический ряд Фурье. Комплексная форма ряда Фурье.

Раздел 2 Теория функции комплексной переменной

Тема 1 Функции комплексной переменной

Множества, области, кривые. Односвязные многосвязные области. Последовательности комплексных чисел. Предел последовательности комплексных чисел. Понятие функции комплексной переменной. Предел и непрерывность функции комплексной переменной. Основные элементарные функции комплексной переменной.

Тема 2 Аналитические функции

Определение производной. Дифференцирование функции комплексной переменной. Дифференциал. Условия Коши-Римана. Аналитическая функция. Гармонические функции. Сопряженногармонические функции.

Тема 3 Конформное отображение

Геометрический смысл модуля производной. Коэффициент подобия. Геометрический смысл аргумента производной. Понятие о конформном отображении. Конформное отображение 1-го рода.

Конформное отображение 2-го рода. Критерий конформности. Принцип взаимно-однозначного соответствия границ. Принцип симметрии Римана-Шварца. Примеры функций, задающих конформное отображение.

Тема 4 Интегрирование функции комплексной переменной

Определение интеграла от функции комплексной переменной. Связь интеграла комплексной переменной с криволинейным интегралом 2-го рода. Свойства интегралов по комплексной переменной. Оценка интеграла от функции комплексной переменной. Основная теорема Коши. Теорема Коши для многосвязной области.

Тема 5 Интегральная формула Коши

Первообразная и неопределенный интеграл. Формула Ньютона-Лейбница. Интеграл Коши. Теорема о среднем для аналитических функций. Принцип максимума модуля аналитической функции. Интеграл типа Коши. Теорема Коши-Лиувилля. Теорема Морера.

Тема 6 Ряды в комплексной плоскости

Числовые ряды с комплексными членами. Частичная сумма ряда. Остаток ряда. Необходимое условие сходимости. Достаточное условие сходимости. Функциональные ряды. Точка сходимости. Область сходимости. Равномерная сходимость функциональных рядов. Степенные ряды. Круг и радиус сходимости степенного ряда.

Тема 7 Ряды Тейлора и Лорана

Ряд Тейлора. Разложение в ряд Тейлора некоторых элементарных функций комплексной переменной. Формулы Эйлера. Голоморфные функции. Нули аналитической функции. Ряд Лорана. Область сходимости ряда Лорана. Разложение аналитической функции в ряд Лорана.

Тема 8 Классификация изолированных особых точек аналитической функции

Классификация изолированных особых точек аналитической функции. Устранимая особая точка. Полюс. Порядок полюса. Существенно особая точка. Теорема Сохотского. Разложение аналитической функции в ряд Лорана в окрестности бесконечно удаленной точки.

Тема 9 Вычеты

Понятие вычета. Основная теорема о вычетах. Вычисление вычетов для простого полюса. Вычисление вычетов для полюса порядка *п*. Логарифмический вычет. Вычет относительно бесконечно удаленной точки. Теорема о сумме вычетов.

Тема 10 Приложения вычетов

Вычисление интегралов по замкнутому контуру. Вычисление с помощью вычетов определенных интегралов от рациональных функций действительной переменной. Вычисление с помощью вычетов определенных интегралов от тригонометрических функций. Вычисление с помощью вычетов несобственных интегралов от функций действительной переменной. Лемма Жордана. Суммирование некоторых рядов с помощью вычетов.

Раздел 3 Элементы операционного исчисления

Тема 1 Преобразование Лапласа

Оригиналы и их свойства. Преобразование Лапласа. Свойства преобразования Лапласа. Существование, непрерывность, единственность. Свойства линейности, подобия, запаздывания, опережения. Изображение периодической функции. Затухание. Дифференцирование оригинала и изображения. Интегрирование оригинала. Интегрирование изображения. Таблица оригиналов и изображений.

Тема 2 Восстановление оригинала по изображению

Свертка функций. Умножение изображений. Интеграл Дюамеля. Теоремы разложения. Обращение преобразования Лапласа. Формула Римана-Меллина. Связь преобразования Лапласа с преобразованием Фурье. Формула обращения.

Тема 3 Приложения операционного исчисления

Применение операционного исчисления к решению дифференциальных уравнений. Примеры решения дифференциальных уравнений с помощью преобразования Лапласа. Применение операционного исчисления к решению систем дифференциальных уравнений. Примеры решения систем дифференциальных уравнений с помощью преобразования Лапласа. Использование операционного исчисления в электротехнике. Переходные значения тока и напряжений в пепи.

Тематический план

Учебный процесс по курсу осуществляется в виде лекций, практических занятий, групповых и индивидуальных консультаций, самостоятельной учебной работы студентов. Итоговой формой контроля знаний является экзамен. Распределение часов по разделам и темам в 3-ом семестре представлено в таблице 1.1.

 $\it T$ аблица $\it 1.1-\Pi$ римерное распределение часов по разделам и темам курса

Номер раздела, темы, занятия	Название раздела, темы, занятия; перечень изучае- мых вопросов	Всего часов	Количество аудиторных часов		
			лекции	практические (семинарские) занятия	CYPC
1	2	3	4	5	6
1	Раздел 1 Гармониче- ский анализ	12	6	6	-
1.1	Функциональные пространства	4	2	2	_
1.2	Ряды Фурье в гильбертовых пространствах	4	2	2	_
1.3	Ряды Фурье по тригонометрической системе	4	2	2	
2	Раздел 2 Теория функции комплексной переменной	44	20	22	2
2.1	Функции комплексной переменной	4	2	2	_
2.2	Аналитические функции	4	2	2	_
2.3	Конформное отображение	2	2	_	_
2.4	Интегрирование функции комплексной переменной	4	2	2	_
2.5	Интегральная формула Коши	4	2	2	_

2.6	Ряды в комплексной	4	2	2	_
	плоскости				
2.7	Ряды Тейлора и Лорана	4	2	2	_
	Классификация изолиро-	6	2	4	_
2.8	ванных особых точек				
	аналитической функции				
2.9	Вычеты	6	2	4	_
2.10	Приложение вычетов	6	2	2	2
3	Раздел 3 Операционное	14	6	6	2
3	исчисление				
3.1	Преобразование Лапласа	6	2	2	2
3.2	Восстановление ориги-	4	2	2	_
3.3	нала по изображению				
	Приложения операцион-	4	2	2	_
3.4	ного исчисления				
	Всего часов за 3-й се-	70	32	34	4
	местр				

Краткий лекционный курс

Раздел 1 Гармонический анализ

Тема 1 Функциональные пространства

- 1.1 Скалярное произведение функций.
- 1.2 Гильбертовы пространства.
- 1.3 Ортогональные системы функций.
- 1.4 Последовательности тригонометрических многочленов.

1.1 Скалярное произведение функций

Функция f(x) называется *кусочно-непрерывной* на [a;b], если она непрерывна на этом отрезке, за исключением, быть может, конечного числа точек, где она имеет разрывы первого рода.

Пусть f(x) – кусочно-непрерывная на [a;b] функция. В любой точке разрыва $x_0 \in [a;b]$ такой функции существуют односторонние пределы $f(x_0 \pm 0)$. Поэтому на каждом участке непрерывно-

сти существуют определенные интегралы Римана $\int_a^b f(x)dx$ и

$$\int\limits_a^b f^2(x)dx$$
 . Значит, кусочно-непрерывная на $\left[a;b\right]$ функция $f(x)$

интегрируема вместе со своим квадратом на [a;b]. Функция f(x) в этом случае называется функцией с интегрируемым квадратом.

Так как на множестве кусочно-непрерывных функций определены линейные операции, удовлетворяющие аксиомам линейного пространства, то это множество образует линейное пространство.

Скалярным произведением функций $\varphi(x)$ и $\psi(x)$ на отрезке [a;b] называется число

$$(\varphi,\psi) = \int_a^b \varphi(x)\psi(x)dx$$
.

На рассматриваемом множестве скалярное произведение функций (φ, ψ) существует и обладает следующими свойствами:

$$-(\varphi,\psi)=(\psi,\varphi);$$

$$-(\varphi_1+\varphi_2,\psi)=(\varphi_1,\psi)+(\varphi_2,\psi);$$

$$-(\lambda \varphi, \psi) = \lambda(\varphi, \psi) \quad \forall \lambda \in \mathbb{R};$$

$$-(\varphi, \varphi) \ge 0, \ (\varphi, \varphi) = 0 \Leftrightarrow \varphi = 0,$$

т. е. удовлетворяет аксиомам евклидова пространства.

Множество всех кусочно-непрерывных на [a;b] функций со скалярным произведением (φ,ψ) называется пространством L_2 и обозначается $L_2[a;b]$.

1.2 Гильбертовы пространства Неотрицательное число

$$\|\varphi\| = \sqrt{\int_a^b \varphi^2(x) dx}$$

называется нормой функции $\varphi(x)$ в $L_2[a;b]$.

Учитывая, что

$$\int_{a}^{b} \varphi^{2}(x) dx = (\varphi, \varphi),$$

норму функции можно записать в виде:

$$\|\varphi\| = \sqrt{(\varphi, \varphi)}$$
.

Функция $\varphi(x)$ называется *нормированной*, если ее норма равна единице. Пространство $L_2[a;b]$ с заданной нормой $\|\varphi\|$, называется *нормированным*.

Метрические пространства, элементами которых являются функции, называются функциональными метрическими пространствами.

Метрическое пространство называется *полным*, если всякая его фундаментальная последовательность сходится.

Полное нормированное пространство называется банаховым пространством.

Полнота понимается здесь в смысле метрики, порожденной нормой пространства.

Полное линейное пространство со скалярным произведением называется гильбертовым пространством.

1.3 Ортогональные системы функций Две функции $\varphi(x) \in L_2[a;b]$ и $\psi(x) \in L_2[a;b]$ называются *орто*-

гональными на отрезке [a;b], если их скалярное произведение на [a;b] равно нулю:

$$(\varphi,\psi) = \int_{a}^{b} \varphi(x)\psi(x)dx = 0.$$

Система функций

$$(\varphi_n(x)) = (\varphi_1(x), \varphi_2(x), ..., \varphi_n(x), ...)$$

(конечная или бесконечная) называется *ортогональной* на отрезке [a;b], если все функции этой системы попарно ортогональны на этом отрезке, т. е.

$$(\varphi_m, \varphi_n) = 0, \forall m \neq n, m, n \in \mathbb{N}$$

Ортогональная система функций ($\varphi_n(x)$) на отрезке [a;b] называется *ортонормированной*, если

$$\|\varphi_n\|^2 = (\varphi_n, \varphi_n) = \int_0^b \varphi_n^2(x) dx = 1 \quad \forall n \in \mathbb{N}.$$

Любую ортогональную на [a;b] систему функций $(\varphi_n(x))$ с $\|\varphi_n\| \neq 0 \ \forall n \in \mathbb{N}$ можно нормировать. Для этого достаточно разделить каждую функцию системы $(\varphi_n(x))$ на ее норму. В результате получим ортонормированную систему функций $\left(\frac{\varphi_n(x)}{\|\varphi_n\|}\right)$.

Основной тригонометрической системой функций на отрезке [-l;l] называется система

$$\left(1,\cos\frac{\pi x}{l},\sin\frac{\pi x}{l},\cos\frac{2\pi x}{l},\sin\frac{2\pi x}{l},...,\cos\frac{n\pi x}{l},\sin\frac{n\pi x}{l},...\right).$$

Основная тригонометрическая система функций является ортогональной на любом отрезке длиной 2l .

Тема 2 Ряды Фурье в гильбертовых пространствах

- 2.1 Экстремальное свойство коэффициентов Фурье.
- 2.2 Неравенство Бесселя.
- 2.3 Сходимость рядов Фурье.
- 2.4 Равенство Парсеваля.
- 2.1 Экстремальное свойство коэффициентов Фурье

При изучении возможности представления функции рядом Тейлора в точке x_0 предполагалось, что f(x) бесконечно дифференцируема в окрестности этой точки. Представление же функций рядами Фурье допускает более широкий класс кусочно-непрерывных функций.

Пусть ($\varphi_n(x)$) — ортогональная система функций в $L_2[a;b]$. Выражение

$$c_0 \varphi_0(x) + c_1 \varphi_1(x) + c_2 \varphi_2(x) + \dots + c_n \varphi_n(x) + \dots = \sum_{n=0}^{\infty} c_n \varphi_n(x).$$

называется обобщенным рядом Фурье по ортогональной системе функций ($\varphi_n(x)$). Если ($\varphi_n(x)$) – основная тригонометрическая система функций, то ряд называется тригонометрическим рядом Фурье.

Mетрикой ho (расстоянием) в пространстве $L_2[a;b]$ называется величина

$$\rho(f,\varphi) = \sqrt{\int_a^b (f(x) - \varphi(x))^2 dx}.$$

Величина $\rho(f, \varphi)$ характеризует близость функций f(x) и $\varphi(x)$ в среднем квадратичном.

Используя определение нормы функции, имеем

$$\rho(f,\varphi) = \|f(x) - \varphi(x)\|.$$

Ортогональным многочленом Фурье называется частичная сумма

$$S_n(x) = \sum_{k=0}^n c_k \varphi_k(x).$$

Если в качестве ортогональной системы функций выбрана основная тригонометрическая система, то многочлен Фурье называется *тригонометрическим* и обозначается $T_n(x)$.

2.2 Неравенство Бесселя

 $Teopema\ 1\ (oб\ экстремальном\ свойстве\ ко-$ эффициентов Фурье) Среди всех обобщенных многочленов

вида
$$S_n(x) = \sum_{k=0}^n \alpha_k \varphi_k(x)$$
, $\alpha_k \in \mathbb{R}$, наилучшей средней квадратич-

ной аппроксимацией функции f(x) на отрезке [a;b] является многочлен Фурье, коэффициенты которого находятся по формулам $\alpha_k = c_k = \frac{(f, \varphi_k)}{\|\varphi_k\|^2}$.

Teopema 2 (неравенство Бесселя) Если $f(x) \in L_2[a;b]$ и $\sum_{n=0}^{\infty} c_n \varphi_n(x)$ ее обобщенный ряд Фурье по ортогональной системе функций ($\varphi_n(x)$), то справедливо неравенство

$$\int_{a}^{b} f^{2}(x) dx \ge \sum_{k=1}^{n} c_{k}^{2} \|\varphi_{k}\|^{2}.$$

2.3 Сходимость рядов Фурье

Ряд Фурье $\sum_{n=0}^{\infty} c_n \varphi_n(x)$ называется равномерно сходящимся к функции $f(x) \in L_2[a;b]$ на отрезке [a;b], если последовательность его частичных сумм $(S_n(x))$ сходится к функции f(x) равномерно, т. е. для любого $\varepsilon > 0$ можно указать такое натуральное число $N = N(\varepsilon)$, что при всех $n > N(\varepsilon)$ будет выполняться равенство

$$|f(x)-S_n(x)|<\varepsilon \quad \forall x\in [a;b].$$

Из равномерной сходимости следует, что при $\,n \to \infty$

$$\max_{a \le x \le h} |f(x) - S_n(x)| \to 0.$$

Ряд Фурье называется сходящимся в среднем квадратичном к функции f(x) на отрезке [a;b], если последовательность его частичных сумм $(S_n(x))$ сходится к функции f(x) в среднем квадратичном, т. е.

$$\lim_{n\to\infty}\int_{a}^{b} (f(x)-S_n(x))^2 dx = 0.$$

Понятие сходимости в среднем квадратичном является обобщением понятия равномерной сходимости.

2.4 Равенство Парсеваля

T е о p е м a 3 Eсли обобщенный ряд Фурье $\sum_{k=0}^{\infty} c_k \varphi_k(x)$ функции

f(x) сходится на отрезке [a;b] равномерно к функции $f(x) \in L_2[a;b]$, то он сходится к f(x) на [a;b] и в среднем квадратичном.

Teopema 4 Для того чтобы обобщенный ряд Фурье $\sum_{k=0}^{\infty} c_k \varphi_k(x)$ функции $f(x) \in L_2[a;b]$ сходился к f(x) на отрезке [a;b] в среднем квадратичном необходимо и достаточно, чтобы выполнялось равенство Парсеваля — Стеклова:

$$\sum_{k=0}^{\infty} c_k^2 \|\varphi_k\|^2 = \int_a^b f^2(x) dx.$$

Ортогональная система функций ($\varphi_k(x)$), для которой выполняется равенство Парсеваля — Стеклова, называется *замкнутой* в $L_2[a;b]$, а само равенство — *уравнением замкнутости*.

Из теоремы 4 следует, что любая функция $f(x) \in L_2[a;b]$ может быть разложена в сходящийся к ней в среднем квадратичном ряд Фурье по ортогональной на [a;b] системе функций ($\varphi_k(x)$), если эта система является замкнутой в $L_2[a;b]$.

Тема 3 Ряды Фурье по тригонометрической системе

- 3.1 Основная тригонометрическая система.
- 3.2 Тригонометрические ряды Фурье.
- 3.3 Тригонометрические ряды Фурье для четных и нечетных функций.
- 3.4 Разложение непериодических функций в тригонометрический ряд Фурье.
 - 3.1 Основная тригонометрическая система

Пусть f(x) — кусочно-непрерывная периодическая функция с периодом T=2l . Рассмотрим основную тригонометрическую систему функций, ортогональную на [-l;l]:

$$\left(1,\cos\frac{\pi x}{l},\sin\frac{\pi x}{l},...,\cos\frac{n\pi x}{l},\sin\frac{n\pi x}{l},...\right)$$

для которой:

$$||1|| = \sqrt{2l}$$
, $|\sin \frac{\pi nx}{l}|| = |\cos \frac{\pi nx}{l}|| = \sqrt{l}$.

Основная тригонометрическая система функций обладает полнотой, т. е. для любой функции f(x), интегрируемой с квадратом, имеет место равенство Парсеваля – Стеклова при a=-l, b=l:

$$\int_{1}^{1} f^{2}(x) dx = \sum_{n=0}^{\infty} c_{n}^{2} \| \varphi_{n} \|^{2}.$$

Поэтому периодическую функцию f(x) с периодом T=2l можно разложить в ряд Фурье, который будет сходиться к функции f(x) в среднем квадратичном:

$$f(x) = \sum_{n=0}^{\infty} c_n \varphi_n(x) = c_0 + c_1 \cos \frac{\pi x}{l} + c_2 \sin \frac{\pi x}{l} + \dots$$

С учетом того, что коэффициенты при косинусах принято обозначать буквой a , при синусах — буквой b , а начальный коэффициент — буквой $c_0 = \frac{a_0}{2}$.

3.2 Тригонометрические ряды Фурье Ряд Фурье

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right),$$

коэффициенты которого определяются по формулам

$$a_{0} = \frac{(1, f)}{\|1\|^{2}} = \frac{1}{l} \int_{-l}^{l} f(x) dx, \ a_{n} = \frac{\left(f, \cos \frac{n \pi x}{l}\right)}{\left\|\cos \frac{n \pi x}{l}\right\|^{2}} = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} dx,$$

$$b_n = \frac{\left(f, \sin\frac{n\pi x}{l}\right)}{\left\|\sin\frac{n\pi x}{l}\right\|^2} = \frac{1}{l} \int_{-l}^{l} f(x) \sin\frac{n\pi x}{l} dx, \ n \in \mathbb{N}.$$

называется *тригонометрическим рядом Фурье* для периодической функции $f(x) \in L_2[a;b]$.

Для тригонометрического ряда Фурье справедливо *уравнение Ляпунова*:

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) = \frac{1}{l} \| f \|^2.$$

В частности, если $f(x) \in L_2[-\pi;\pi]$, то ряд Фурье для такой функции имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

где коэффициенты ряда Фурье определяются по формулам:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx,$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \ n \in \mathbb{N}.$$

Каждой периодической с периодом T=2l функции $f(x) \in L_2[-l;l]$ можно поставить в соответствие ряд Фурье

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n \pi x}{l} + b_n \sin \frac{n \pi x}{l} \right).$$

Важными являются два вопроса о сходимости рядов Фурье:

– при каких условиях, налагаемых на функцию f(x), ряд Фурье

сходится в том или ином смысле к этой функции?

- как влияют свойства функции f(x) на характер сходимости ее ряда Фурье?

Ответ на эти вопросы будет дан в следующих теоремах.

Teopema 1 Ecлu $f(x) \in L_2[-l;l]$ — кусочно-непрерывная на отрезке [-l;l] функция, то ее тригонометрический ряд Фурье (2.4) сходится к функции f(x) в среднем квадратичном:

$$\lim_{n\to\infty} \int_{-l}^{l} \left(f(x) - \frac{a_0}{2} - \sum_{k=1}^{n} \left(a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l} \right) \right) dx = 0.$$

 $Teopema\ 2$ Если $f(x) \in L_2[-l;l]$ — кусочно-гладкая на отрезке [-l;l] функция, то ее тригонометрический ряд Фурье сходится в каждой точке этого отрезка и для суммы ряда Фурье справедливы следующие соотношения:

- 1) S(x)=f(x), если x точка непрерывности функции f(x);
- 2) $S(x) = \frac{f(x_0 0) + f(x_0 + 0)}{2}$, если x_0 точка разрыва перво-

го рода функции f(x);

3)
$$S(-l) = S(l) = \frac{f(-l+0) + f(l-0)}{2}$$
.

На рисунке 1 дана геометрическая интерпретация условий 1), 2), 3) теоремы 2.

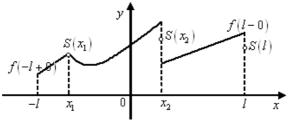


Рисунок 1 – Сходимость ряда Фурье в различных точках

Так, например, условие 2) означает, что в точках разрыва первого рода сумма ряда Фурье равна среднему арифметическому пределов функции справа и слева.

Teopema 3 Если функция $f(x) \in L_2[-l;l]$ является кусочногладкой и непрерывной на отрезке [-l;l], а на концах этого от-

резка удовлетворяет условию f(-l)=f(l), то ее тригонометрический ряд Фурье на [-l;l] сходится к f(x) равномерно.

Теоремы 1-3 показывают, как свойства функции $f(x) \in L_2[a;b]$ влияют на сходимость ее ряда Фурье:

- если f(x) кусочно-непрерывная функция с периодом T=2l , то ее ряд Фурье сходится к ней в среднем квадратичном;
- если f(x) кусочно-гладкая функция, то ее ряд Фурье сходится к f(x) в каждой точке непрерывности этой функции и к $\frac{f(x+0)+f(x-0)}{2}$ в точке разрыва, т.е. сумма ряда не везде совпадает с f(x);
- если f(x) кусочно-гладкая и непрерывная функция, то ее ряд Фурье сходится равномерно к f(x).
- 3.3 Тригонометрические ряды Фурье для четных и нечетных функций

Для четной функции имеет место равенство f(-x)=f(x) $\forall x \in [-l;l]$. В этом случае произведение $f(x)\cos\frac{n\pi x}{l}$ является четной функцией, а произведение $f(x)\sin\frac{n\pi x}{l}$ — нечетной. Поэтому коэффициенты ряда Фурье для четной функции находятся по формулам:

$$a_0 = \frac{2}{l} \int_0^l f(x) dx$$
, $a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n \pi x}{l} dx$, $b_n = 0$, $n \in \mathbb{N}$.

а сам ряд Фурье для четной функции содержит только косинусы и свободный член:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}.$$

Для нечетных функций имеет место равенство f(-x) = -f(x) $\forall x \in [-l; l]$. В этом случае произведение $f(x) \cos \frac{n\pi x}{l}$ является нечетной функцией, а произведение $f(x) \sin \frac{n\pi x}{l}$ — четной. Таким

образом, коэффициенты тригонометрического ряда Фурье для нечетной функции находятся по формулам:

$$a_0 = a_n = 0$$
, $n \in \mathbb{N}$, $b_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} dx$, $n \in \mathbb{N}$,

а сам тригонометрический ряд Фурье для нечетной функции содержит только синусы:

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n \pi x}{l}.$$

3.4 Разложение непериодических функций в тригонометрический ряд Фурье

Если кусочно-гладкая функция f(x) задана на отрезке [0;l], то ее можно разложить в ряд Фурье или только по косинусам, или только по синусам.

Для разложения функции f(x) в ряд по *косинусам* ее продолжают на отрезок [-l;0] четным образом (рисунок 2):

$$f^*(x) = \begin{cases} f(-x) \ \forall x \in [-l;0], \\ f(x) \ \forall x \in [0;l], \end{cases}$$

которую затем периодически продолжают на всю числовую ось.

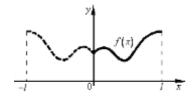


Рисунок 2 – Продолжение непериодической функции четным образом

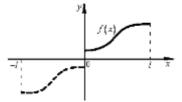


Рисунок 3 – Продолжение непериодической функции нечетным образом

В этом случае ряд Фурье для функции f(x) на отрезке [0;l] содержит только косинусы:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} dx,$$

где
$$a_0 = \frac{2}{l} \int_0^l f(x) dx$$
, $a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$, $n \in \mathbb{N}$.

Для разложения функции f(x) в ряд по *синусам* ее продолжают на отрезок [-l;0] нечетным образом (рисунок 3):

$$f^*(x) = \begin{cases} -f(-x) \text{ при } x \in [-l;0], \\ f(x) \text{ при } x \in [0;l], \end{cases}$$

которую затем периодически продолжают на всю числовую ось.

В этом случае ряд Фурье для функции f(x) на отрезке [0;l] содержит только косинусы:

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} dx,$$

где
$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$$
, $n \in \mathbb{N}$.

Пусть $f(x) \in L_2[-l;l]$, 2l-периодическая функция, которая представима сходящимся тригонометрическим рядом Фурье. В электро- и радиотехнике для такой функции используется комплексная форма тригонометрического ряда Фурье:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{n\pi x}{l}}.$$

Коэффициенты c_n , $n=0,\pm 1,...$, ряда находятся по формулам:

$$c_0 = \frac{1}{2l} \int_{-l}^{l} f(x) dx$$
, $c_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-i\frac{n\pi x}{l}} dx$ $n = 0, \pm 1, \pm 2...$

Выражения $e^{irac{n\pi x}{l}}$ называются *гармониками*, числа $lpha_n=rac{n\pi}{l}$,

 $n = 0, \pm 1, \pm 2... - волновыми числами,$ множество всех волновых чисел - спектром, коэффициенты c_n - комплексными амплитудами.

Вопросы для самоконтроля

Определения

- 1 Что называется скалярным произведением функций и какими свойствами оно обладает?
- $2\,$ Какая система функций называется ортогональной и ортонормированной?

- 3 Какая функция называется кусочно-непрерывной?
- 4 Какое выражение называется обобщенным рядом Фурье?
- 5 Что называется среднеквадратичным уклонением функций?
- 6 Какая ортогональная система функций называется замкнутой?

Формулировки теорем и формулы

- 1 Какое выражение называется ортогональным многочленом Фурье?
- 2 По каким формулам вычисляются коэффициенты тригонометрического ряда Фурье для периодических функций?

Доказательства теорем

- 1 Запишите основную тригонометрическую систему и докажите ее ортогональность.
- 2 Сформулируйте и докажите теорему об экстремальном свойстве коэффициентов Фурье.
 - 3 Сформулируйте и докажите неравенство Бесселя.

Вопросы и задачи на понимание

- 1 Как измерить близость функций?
- 2 Что можно сказать о сходимости обобщенного ряда Фурье, если для него выполняется неравенство Бесселя?
- 3 При выполнении каких условий тригонометрический ряд Фурье сходится к функции?
- 4 В чем особенность вычисления коэффициентов Фурье для четных и нечетных функций?
 - 5 Как разложить в ряд Фурье непериодическую функцию?

Раздел 2 Функции комплексной переменной

Тема 1 Функции комплексной переменной

- 1.1 Множества, кривые, области.
- 1.2 Предел последовательности.
- 1.3 Предел и непрерывность функции комплексной переменной.
- 1.4 Основные элементарные функции комплексной переменной.

1.1 Множества, кривые, области

Множество точек плоскости \mathbb{C} , удовлетворяющих неравенству $|z_0-z| \leq \delta$, называется δ -окрестностью точки z_0 :

$$U(\delta, z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < \delta \}.$$

Множество точек комплексной плоскости, удовлетворяющих условию |z|>R>0, называется R - окрестностью бесконечно удаленной точки $z=\infty$:

$$U(R,\infty) = \{ z \in \mathbb{C} \mid |z| > R \}.$$

Комплексная плоскость вместе с бесконечно удаленной точкой $z=\infty$ называется расширенной комплексной плоскостью. Символы $x\pm i\infty$, $\pm \infty + iy$, $\infty e^{i\varphi}$ задают направления на расширенной комплексной плоскости.

Точка z_0 называется *предельной* точкой множества $E \subset \mathbb{C}$, если в любой окрестности точки z_0 расположено бесконечно много точек $z \in E$. Предельная точка z_0 может принадлежать множеству E, а может и не принадлежать ему.

Точка $z\in E$ называется внутренней точкой множества E, если существует такое $\delta>0$, что окрестность $U(\delta;z)$ состоит только из точек множества E. Множество называется *открытым*, если каждая точка этого множества является его внутренней точкой.

Точка z_0 расширенной комплексной плоскости называется zpa-ничной точкой множества E, если при любом $\delta>0$ окрестность $U(\ \delta,z_0)$ содержит точки $z\in E$ и точки $z\notin E$. Граничная точка множества E может принадлежать множеству E, а может и не принадлежать ему. Совокупность всех граничных точек множества называется zpahuией множества. Множество E, содержащее свою границу, называется z

Пусть $t \in T \subset \mathbb{C}$. Если каждому значению $t \in T$ поставлено в соответствие $z \in \mathbb{C}$, то говорят, что на множестве T задана комплекснозначная функция действительной переменной t: z = z(t).

Полагая z(t)=x(t)+iy(t), можно считать, что задание функции z(t) равносильно заданию на множестве T двух действительных функций x(t) и y(t) переменной t. Очевидно, если x(t) и y(t) непрерывные функции, то и функция z(t) является непрерывной. Графиком функции z(t) является кривая на комплексной плоскости \Box . Точкой camonepeceuenus кривой z(t) называется точка z, для которой при $t_1 \neq t_2$ имеет место соотношение $z(t_1) = z(t_2)$.

Кривой Жордана называется непрерывная кривая z(t), $t \in T$, не имеющая точек самопересечения. Замкнутой кривой называется кривая Жордана, у которой конец совпадает с началом (совпадение начала и конца замкнутой кривой не считается точкой самопересечения). Кривая Жордана z(t) называется гладкой, если функции x(t) и y(t) непрерывно-дифференцируемы и $x_t^{'2} + y_t^{'2} \neq 0$ на множестве T. Кривая Жордана называется кусочно-гладкой, если она состоит из конечного числа гладких кривых.

Множество E называется censuremeta substitution объем вего точки можно соединить кривой Жордана, целиком лежащей в <math>E . Связное открытое множество E называется oбластью.

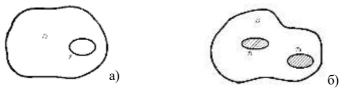


Рисунок 4 – Односвязная (а) и многосвязная (б) области

Область, ограниченная замкнутым контуром γ , обозначается D_{γ} . Область D называется односвязной, если любой замкнутый контур γ целиком лежащий в D, ограничивает область $D_{\gamma} \subset D$ (рисунок 4, а). В противном случае область называется многосвязной (рисунок 4, б).

Для многосвязной области D найдутся контуры $\gamma_1,\ \gamma_2,\ ...,\ \gamma_n$, такие, что точки из областей $D_{\gamma_1},\ D_{\gamma_2},\ ...,\ D_{\gamma_n}$ не входят в D . С по-

мощью дополнительных разрезов l_1 , l_2 , …, l_n многосвязная область преобразуется в односвязную (рисунок 5), так как в области с разрезами любой замкнутый контур γ не будет содержать внутри себя точек из областей D_{γ_1} , D_{γ_2} , …, D_{γ_n} .

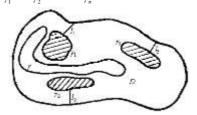


Рисунок 5 — Многосвязная область $\,D\,$ и ее разрезы $\,l_{\scriptscriptstyle 1}\,,\,l_{\scriptscriptstyle 2}\,,\,l_{\scriptscriptstyle 3}\,$

Положительным направлением обхода границы области D считается то направление, при котором область D остается слева.

1.2 Предел последовательности

Пусть дана последовательность комплексных чисел (z_n) , n = 1, 2, ...

Число a , $a\in\mathbb{C}$ называется npedenom числовой последовательности (z_n) , если для любого $\varepsilon>0$ существует номер $N(\varepsilon)$ такой, что для всякого $n>N(\varepsilon)$ справедливо неравенство $|z_n-a|<\varepsilon$:

$$a = \lim_{n \to \infty} z_n \iff \forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \quad |z_n - a| < \varepsilon.$$

Комплексное число $a=\infty$ называется *пределом* последовательности (z_n) , если $\forall \ R>0$ найдется такой номер N(R), что для любого n>N выполняется неравенство $|z_n|>R$:

$$\lim_{n\to\infty} z_n = \infty \iff \forall R > 0 \ \exists N(R) : \forall n \ge N(R) \ \left| z_n \right| > R.$$

 $T\ e\ o\ p\ e\ M\ a\ 1$ Для того чтобы существовал конечный предел $a=\alpha+ieta$ последовательности $\left(z_{n}
ight),\ z_{n}=x_{n}+iy_{n}$, необходимо и достаточно, чтобы существовали пределы последовательностей действительных чисел $\left(x_{n}
ight)$ и $\left(y_{n}
ight)$ и $\lim_{n o\infty}x_{n}=\alpha$, $\lim_{n o\infty}y_{n}=eta$.

Пусть $z_n=r_ne^{i\varphi_n}$ и $a=re^{i\varphi}$ показательные формы для $z_n=x_n+iy_n$ и $a=\alpha+i\beta$ соответственно.

Teopema 2 Для того чтобы существовал конечный предел $re^{i\varphi}$, $r\neq 0$, последовательности $\left(r_ne^{i\varphi_n}\right)$, необходимо и достаточно, чтобы существовал предел $\lim_{n\to\infty}r_n=r$, а при соответствующем выборе области главных значений аргументов φ_n и φ существовал предел $\lim_{n\to\infty}\varphi_n=\varphi$.

Последовательность (z_n) называется *ограниченной*, если существует число $M \in \mathbb{R}_+$ такое, что все элементы последовательности удовлетворяют неравенству $|z_n| \leq M$.

Сходящиеся последовательности комплексных чисел обладают свойствами:

- сходящаяся последовательность имеет только один предел;
- если последовательность (z_n) сходится, то она ограничена:

$$\lim_{n\to\infty} z_n = a \implies \exists M \in \mathbb{R} : |z_n| \le M ;$$

 сумма (разность) двух сходящихся последовательностей есть сходящаяся последовательность, предел которой равен сумме пределов последовательностей:

$$\lim_{n\to\infty} (z_n + w_n) = \lim_{n\to\infty} z_n + \lim_{n\to\infty} w_n;$$

 произведение двух сходящихся последовательностей есть сходящаяся последовательность предел которой равен произведению пределов последовательностей:

$$\lim_{n\to\infty} (z_n \cdot w_n) = \lim_{n\to\infty} z_n \cdot \lim_{n\to\infty} w_n;$$

— частное двух сходящихся последовательностей (z_n) и (w_n) , $\lim_{n\to\infty} w_n \neq 0$, есть сходящаяся последовательность предел которой равен частному пределов последовательностей:

$$\lim_{n\to\infty}\frac{z_n}{w_n}=\frac{\lim_{n\to\infty}z_n}{\lim_{n\to\infty}w_n};$$

 $T\ e\ o\ p\ e\ M\ a\ 3\ (\kappa\ p\ u\ m\ e\ p\ u\ i\ K\ o\ u\ u\)$ Для того чтобы последовательность $\left(z_{n}\right)$ была сходящейся, необходимо и достаточно, чтобы для любого $\varepsilon>0$ существовал номер $N\left(\varepsilon\right)$ такой, что для всякого $n>N\left(\varepsilon\right)$ и p=1,2,... справедливо неравенство $\left|z_{n+p}-z_{n}\right|<\varepsilon$.

1.3 Предел и непрерывность функции комплексной переменной

Если каждому комплексному числу $z \in E$ (z = x + iy) по правилу f поставлено в соответствие одно или несколько комплексных чисел $w \in G$, (w = u + iv), то говорят, что на множестве E задана функция комплексной переменной w = f(z), переменная z называется независимой переменной, а w – значением функции.

Если каждому $z \in E$ соответствует одно значение $w \in G$, то функция w = f(z) называется *однозначной*; в противном случае — *многозначной*. При этом множество E называется *областью* определения, а совокупность всех значений w, которые функция принимает на E, называется *множеством значений*.

Геометрически функция w = f(z) представляет собой отображение области E плоскости $\mathbb{C}\left(Oxy\right)$ на некоторую область G плоскости $\mathbf{W}\left(O^*uv\right)$ (рисунок 6)

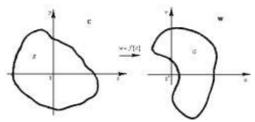


Рисунок 6 – Геометрическая интерпретация функции w = f(z)

Обратное отображение множества G на множество E определяет обратную функцию $z = \varphi(w)$.

Если функция $w_1=f(z)$ отображает область E на область E_1 , а функция $w=g(w_1)$ отображает область E_1 на область G, то *сложеная* функция $w=g\left(f\left(z\right)\right)$ осуществляет отображение области E на G.

Функция f(z) называется *однолистной* на множестве E, если она однозначна и в различных точках $z_1 \neq z_2$ множества E принимает различные значения $f\left(z_1\right) \neq f\left(z_2\right)$.

Пусть z = x + iy и w = u + iv. Тогда функция f(z) может быть записана в виде:

$$f(z) = u(x, y) + iv(x, y),$$

где u(x, y) = Re f(z) — действительная часть, v(x, y) = Im f(z) — мнимая часть.

Модуль функции f(z) находится по формуле:

$$\left| f(z) \right| = \sqrt{u^2(x;y) + v^2(x;y)}.$$

Пусть однозначная функция f(z) определена в некоторой окрестности точки $z_0 \in \mathbb{C}$, кроме, быть может, самой точки z_0 .

Комплексное число A ($A\neq\infty$) называется $\mathit{пределом}$ функции f(z) при $z\to z_0$, если для любого $\varepsilon>0$ найдется такое $\delta=\delta(\varepsilon)>0$, что для всех точек z, удовлетворяющих неравенству $0<|z-z_0|<\delta$, выполняется неравенство $|f(z)-A|<\varepsilon$:

$$A = \lim_{z \to z_0} f(z) \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \forall z \; 0 < \left| z - z_0 \right| < \delta \qquad \left| f(z) - A \right| < \varepsilon \; .$$

Комплексное число $A=\infty$, называется *пределом* функции f(z) при $z\to z_0$, если для любого R>0 найдется такое $\delta(R)>0$, что для всех точек z, удовлетворяющих неравенству $0<\left|z-z_0\right|<\delta$, выполняется неравенство $\left|f(z)\right|>R$:

$$\lim_{z \to z_0} f(z) = \infty \iff \forall R > 0 \; \exists \delta(R) > 0 : \forall z \; 0 < \left| z - z_0 \right| < \delta \qquad \left| f(z) \right| > R \; .$$

Функция $\alpha(z)$ называется *бесконечно малой* при $z \to z_0$, если ее предел равен нулю: $\lim_{z \to z_0} f(z) = 0$.

Teopema 4 (критерий Коши) Для существования конечного предела A функции f(z) необходимо и достаточно, чтобы для любого числа $\varepsilon > 0$ существовало такое число $\delta = \delta(\varepsilon) > 0$, что для любых точек z' и z'', принадлежащих области определения функции f(z) и удовлетворяющих неравенствам $0 < |z'-z| < \delta$ и $0 < |z''-z| < \varepsilon$, выполняется неравенство $|f(z') - f(z'')| < \varepsilon$.

Teopema 5 Пусть функция f(z) = u(x,y,) + iv(x,y) определена и конечна в некоторой окрестности точки $z_0 = x_0 + iy_0$ и $A = u_0 + iv_0$. Тогда для того, чтобы $\lim_{z \to z_0} f(z) = A$, необходимо и достаточно, чтобы существовали пределы

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0, \ \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0.$$

Пусть функции f(z) и g(z) имеют конечные пределы при $z \to z_0$. Тогда имеют место соотношения:

$$\begin{split} &\lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) \;, \\ &\lim_{z \to z_0} [f(z) \cdot g(z)] = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z) \;, \\ &\lim_{z \to z_0} \left[\frac{f(z)}{g(z)} \right] = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} \; \text{при } g(z) \neq 0 \;. \end{split}$$

Функция f(z) называется непрерывной в точке z_0 , если

$$\lim_{z\to z_0} f(z) = f(z_0) .$$

Функция f(z) называется непрерывной в области D, если она непрерывна в каждой точке этой области.

Сумма, разность и произведение конечного числа функций комплексной переменной, непрерывных в области D, является непрерывной функцией в этой области. Частное двух непрерывных функций f(z) и g(z) в области D является непрерывной функцией в тех точках этой области, где $g(z) \neq 0$.

Если функция $w_1 = f(z)$ непрерывна в точке z_0 и функция $w = g(w_1)$ непрерывна в точке $w_1 = f\left(z_0\right)$, то сложная функция $w = g\left(f\left(z\right)\right)$ непрерывна в точке z_0 .

Функция f(z) называется равномерно непрерывной в области D, если для любого $\varepsilon>0$ можно найти такое $\delta=\delta(\varepsilon)>0$, что для любых двух точек z', $z''\in D$, расстояние между которыми меньше δ ($\left|z'-z''\right|<\delta$), расстояние между соответствующими значениями функции f(z') и f(z'') меньше ε ($\left|f(z')-f(z'')\right|<\varepsilon$).

Очевидно, что всякая равномерно непрерывная функция в области D является непрерывной функцией в этой области. Обратное утверждение верно не всегда: непрерывная функция в области D может и не обладать свойством равномерной непрерывности.

Teopema 6 (Kahmopa) Если f(z) непрерывна в замкнутой области \overline{D} , то она равномерно непрерывна в этой области. 1.4 Основные элементарные функции комплексной переменной

Дробно-рациональной функцией называется функция вида:

$$f(z) = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{b_0 z^m + b_1 z^{m-1} + \dots + b_m},$$

$$a_i, b_i \in \mathbb{C}, i = 0, 1, \dots, n, j = 0, 1, \dots, m, n, m \in \mathbb{N},$$

частными случаями которой являются:

- -линейная функция f(z) = az + b;
- степенная функция $f(z) = z^n$;
- дробно-линейная функция $f(z) = \frac{az+b}{cz+d}$, $ad-bc \neq 0$;
- функция Жуковского $f(z) = \frac{1}{2} \left(z + \frac{1}{z}\right)$.

Показательной функцией называется функция вида

$$f(z)=e^z,$$

для которой при z = x + iy справедливо представление

$$e^{x+iy} = e^x(\cos y + i\sin y),$$

и формулы Эйлера

$$e^{iz} = \cos z + i \sin z$$
, $e^{-iz} = \cos z - i \sin z$.

Тригонометрическими функциями называются функции:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i},$$

$$\operatorname{tg} z = \frac{\sin z}{\cos z}, \quad \operatorname{ctg} z = \frac{\cos z}{\sin z}.$$

Все тригонометрические тождества для тригонометрических функций комплексного переменного аналогичны тождествам тригонометрических функций действительного переменного;

Гиперболическими функциями называются функции:

$$\operatorname{sh} z = \frac{e^{z} - e^{-z}}{2}, \quad \operatorname{ch} z = \frac{e^{z} + e^{-z}}{2},$$

$$\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}, \quad \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z}.$$

Гиперболические и тригонометрические функции связаны между собой соотношениями:

$$\operatorname{sh} z = -i \cdot \sin iz$$
, $\sin z = -i \operatorname{sh} iz$,
 $\operatorname{ch} z = \cos iz$, $\cos z = \operatorname{ch} iz$,
 $\operatorname{th} z = -i \operatorname{tg} iz$, $\operatorname{tg} z = -i \operatorname{th} iz$,
 $\operatorname{cth} z = i \operatorname{ctg} iz$, $\operatorname{ctg} z = i \operatorname{cth} iz$.

Для гиперболических функций справедливы тождества, аналогичные тригонометрическим тождествам за исключением

$$ch^2 z - sh^2 z = 1.$$

Логарифмической функцией называется функция вида:

$$\operatorname{Ln} z = \ln |z| + i \operatorname{Arg} z \quad \text{или}$$

$$\operatorname{Ln} z = \ln |z| + i (\operatorname{arg} z + 2\pi k) , k \in \mathbb{N},$$

которая является многозначной.

Значение функции, которое получается при k=0, называется главным значением и обозначается

$$\ln z = \ln |z| + i \arg z.$$

Общей степенной функцией называется функция

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z}, \ \alpha \in \mathbb{C}, \ z \neq 0,$$

которая является многозначной. Главное значение данной функции равно

$$z^{\alpha} = e^{\alpha \cdot \ln z}$$
.

Общей показательной функцией называется функция

$$a^z = e^{z \cdot \operatorname{Ln} a}, \ a \in \mathbb{C} \setminus \{0\},$$

которая является многозначной, и ее главное значение равно

$$a^z = e^{z \cdot \ln a}$$
.

Обратные тригонометрические функции $Arc \sin z$, $Arc \cos z$, Arctg z, Arcctg z определяются как обратные функции к функциям $\sin z$, $\cos z$, tg z, ctg z соответственно. Эти функции являются многозначными и выражаются через логарифмическую:

Arcsinz =
$$-i \operatorname{Ln}\left(iz + \sqrt{1-z^2}\right)$$
, Arctg $z = -\frac{i}{2}\operatorname{Ln}\left(\frac{1+iz}{1-iz}\right)$,
Arccos $z = -i\operatorname{Ln}\left(z + \sqrt{z^2 - 1}\right)$, Arcctg $z = \frac{i}{2}\operatorname{Ln}\left(\frac{z-i}{z+i}\right)$.

Функции являются многозначными, и их главные значения $arcsin\ z$, $arccos\ z$, $arcctg\ z$ получаются, если брать главные значения соответствующих логарифмов;

Обратные гиперболические функции Arcsh z, Arcch z, Arcth z, Arcch z определяются как обратные функции к функциям $\sinh z$, $\cosh z$, $\cot z$, $\cot z$ соответственно. Эти функции являются многозначными и выражаются через логарифмическую:

Arcsh
$$z = \operatorname{Ln}\left(z + \sqrt{z^2 + 1}\right)$$
, Arcch $z = \operatorname{Ln}\left(z + \sqrt{z^2 - 1}\right)$,

Arcth $z = \frac{1}{2}\operatorname{Ln}\left(\frac{1+z}{1-z}\right)$, Arcch $z = \frac{1}{2}\operatorname{Ln}\left(\frac{z+1}{z-1}\right)$.

Функции являются многозначными и их главные значения arcsh z, arcch z, arcch z, arcch z получаются, если брать главные значения соответствующих логарифмов.

Тема 2 Аналитические функции

- 2.1 Определение производной.
- 2.2 Условия Коши-Римана.
- 2.3 Аналитическая функция.
- 2.4 Сопряженно-гармонические функции.

2.1 Определение производной

Пусть однозначная функция f(z) определена и конечна в некоторой области $D \subset \mathbb{C}$. И пусть точки z и $z + \Delta z$ принадлежат области D. Обозначим $\Delta f(z) = f(z + \Delta z) - f(z)$.

Производной функции f(z) в точке z называется предел (если он существует и конечный)

$$f'(z) = \lim_{\Delta z \to 0} \frac{\Delta f(z)}{\Delta z}$$
.

Приращение Δz стремится к нулю любым образом, т. е. точка $z + \Delta z$ приближается к точке z по любому направлению.

Функция f(z) называется дифференцируемой в точке z, если ее приращение $\Delta f(z)$ представимо в виде

$$\Delta f(z) = C \cdot \Delta z + \alpha (\Delta z) \cdot \Delta z$$
,

где $\alpha(\Delta z) \to 0$ при $\Delta z \to 0$.

 $Teopema\ 1$ Для того чтобы функция f(z) была дифференцируемой в точке z, необходимо и достаточно, чтобы выполнялось равенство

$$\Delta f(z) = f'(z) \cdot \Delta z + \alpha(\Delta z) \cdot \Delta z$$
,

 $\partial e \lim_{\Delta z \to 0} \alpha (\Delta z) = 0.$

Величина $f'(z)\Delta z$ называется $\partial u \phi \phi$ еренциалом функции f(z) и обозначается $df(z) = f'(z)\Delta z$.

В частности, при f(z) = z получаем $dz = \Delta z$, т. е. дифференциал независимой переменной совпадает с ее приращением. Заменяя приращение Δz на dz, имеем

$$df(z) = f'(z)dz$$
.

Таким образом, дифференциал дифференцируемой функции равен произведению ее производной на дифференциал независимой переменной.

2.2 Условия Коши-Римана

Пусть f(z) = u(x; y) + iv(x; y) однозначная функция комплексной переменной z = x + iy, определенная в области D.

Teopema 2 Для того чтобы в точке z = x + iy функция f(z) = u(x;y) + iv(x;y) была дифференцируемой необходимо и достаточно, чтобы функции u(x;y) и v(x;y) были дифференцируемы в точке (x;y) как функции двух действительных переменных x и y, и выполнялись условия Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} .$$

2.3 Аналитическая функция

Функция f(z) называется аналитической в точке z, если она дифференцируема как в самой точке, так и в ее окрестности. Функция f(z) называется аналитической в области $D \subset \mathbb{C}$, если она аналитична в каждой точке этой области.

Производная аналитической функции находится по формулам:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}, \qquad f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y},$$
$$f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}, \qquad f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}.$$

Поскольку свойства алгебраических действий и правила предельного перехода для функций действительной переменной распространяются и на функцию комплексной переменной, то правила дифференцирования функций действительной переменной справедливы и для функции комплексной переменной:

$$(f(z) + g(z))' = f'(z) + g'(z),$$

$$(f(z) \cdot g(z))' = f'(z) \cdot g(z) + f(z) \cdot g'(z),$$

$$(\frac{f(z)}{g(z)})' = \frac{f'(z) \cdot g(z) - f(z) \cdot g'(z)}{g^{2}(z)}, g(z) \neq 0,$$

$$(f(g(z)))' = f_{g}' \cdot g'(z),$$

$$f'(z) = \frac{1}{(f^{-1}(z))'}.$$

2.4 Сопряженно-гармонические функции

Функция $g\left(x;y\right)$ действительных переменных x и y называется *гармонической*, если она дважды дифференцируема и ее частные производные $\frac{\partial^2 g\left(x;y\right)}{\partial x^2}$ и $\frac{\partial^2 g\left(x;y\right)}{\partial y^2}$ удовлетворяют уравнению Лапласа

$$\frac{\partial^2 g(x;y)}{\partial x^2} + \frac{\partial^2 g(x;y)}{\partial y^2} = 0.$$

 $T \, e \, o \, p \, e \, m \, a \, 3 \, E$ сли функция f(z) = u(x;y) + iv(x;y) аналитическая в области $D \subset \mathbb{C}$, то u(x;y) и v(x;y) являются гармоническими в области D.

Обратное верно не всегда: если взять за u(x;y) и v(x;y) две произвольные функции, гармонические в области D, то функция f(z) = u(x;y) + iv(x;y) не всегда будет аналитической в этой об-

ласти, так как две произвольно взятые гармонические функции могут не удовлетворять условиям Коши-Римана.

Две гармонические в области $D \subset \mathbb{C}$ функции u(x; y) и v(x; y), связанные в области D условиями Коши-Римана, называются сопряженными.

Теорема 4 Пусть $D \subset \mathbb{C}$ односвязная область и функция u(x;y) гармоническая в D. Тогда существует такая сопряженная ей гармоническая функция v(x;y), определенная c точностью до постоянного слагаемого, что функция f(z) = u(x;y) + iv(x;y) является аналитической.

Тема 3 Конформное отображение

- 3.1 Геометрический смысл модуля производной.
- 3.2 Геометрический смысл аргумента производной.
- 3.3 Понятие о конформном отображении.
- 3.4 Критерий конформности.
- 3.1 Геометрический смысл модуля производной Пусть функция w=f(z) аналитическая в некоторой точке z_0 и $f'(z_0)\neq 0$. Модуль производной $\left|f'(z_0)\right|$ называется коэффициентом подобия в точке z_0 при отображении w=f(z). При $\left|f'(z_0)\right|>1$ имеет место растяжение, при $\left|f'(z_0)\right|<1$ сжатие.
- 3.2 Геометрический смысл аргумента производной

Аргумент производной arg $f'(z_0)$ — это угол, на который надо повернуть касательную в точке z_0 к любой гладкой кривой Γ , проходящей через точку z_0 так, чтобы получить касательную в точке $w_0=f\left(z_0\right)$ к образу Γ' этой кривой при отображении $w=f\left(z\right)$. При этом, если arg $f'(z_0)>0$, то поворот происходит против часовой стрелки, если arg $f'(z_0)<0$ — по часовой.

3.3 Понятие о конформном отображении

Взаимно-однозначное отображение области $D \subset \mathbb{C}$ на область $D' \subset \mathbb{W}$, осуществляемое функцией w = f(z), называется *конформным*, если оно в каждой точке области D обладает свойством сохранения углов и постоянством растяжений.

Другими словами, если w = f(z) конформное отображение области $D \subset \mathbb{C}$ в область $D' \subset W$, то

- величина угла между пересекающимися в точке z_0 кривыми области D равна величине угла между образами этих кривых, пересекающихся в точке $w_0 = f\left(z_0\right)$ области D';
- бесконечно малому кругу с центром в точке $z_0 \in D$ соответствует бесконечно малый круг с центром в точке $w_0 = f\left(z_0\right) \in D'$.

Если при отображении w = f(z) направление отсчета соответствующих углов одинаковое, то имеет место конформное отображение I-го poda, если направление отсчета углов изменяется на противоположное, то - конформное отображение 2-го poda.

 $Teopema\ 1$ Пусть функция $w=f\left(z\right)$ — аналитическая в точке z_0 и $f'(z_0)\neq 0$. Тогда отображение $w=f\left(z\right)$ является конформным в точке z_0 .

3.4 Критерий конформности

 $Teopema\ 2\ (критерий\ конформности)$ Для того, чтобы функция w=f(z) являлась конформным отображением в области D, необходимо и достаточно, чтобы f(z) была однолистной, аналитической и $f'(z) \neq 0$ всюду в области D.

Для конформного отображения w = f(z) справедливы следующие теоремы.

Teopema 3 (Pumaha) Всякую односвязную область D плоскости \mathbb{C} , граница которой состоит более чем из одной точки, можно конформно отобразить на внутренность единичного круга |w| < 1 плоскости W.

Teopema 4 Существует единственная функция w = f(z), осуществляющая конформное отображение заданной односвязной

области D, граница которой состоит более чем из одной точки, на единичный круг |w| < 1 так, что

$$f(z_0) = 0$$
, $\arg f'(z_0) = \alpha$, $z_0 \in E$, $\alpha \in \square$.

Teopema 5 (npuhuun взаимно однозначного соответствия границі Пусть в ограниченной односвязной области $D \subset \mathbb{C}$ с контуром γ задана аналитическая функция w = f(z), непрерывная в \overline{D} и осуществляющая взаимно однозначное отображение контура γ на некоторый контур Γ плоскости W. Тогда, если при заданном отображении контуров сохраняется направление обхода, то функция w = f(z), осуществляет конформное отображение D на внутреннюю область $D' \subseteq W$, ограниченную контуром Γ .

Пусть область D содержит в составе своей границы прямолинейный отрезок γ . Область D^* , полученная зеркальным отражением области D относительно прямой, на которой лежит отрезок γ , называется областью, *симметричной* области D относительно γ (рисунок 7).

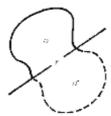


Рисунок 7 — Симметричные области D и D^* относительно γ

Точки z_1 и z_2 называются *симметричными* относительно прямой, если они лежат на перпендикуляре к этой прямой по разные стороны от нее и на равных расстояниях.

Teopema 6 (принцип симметрии Римана-Шварца) Пусть 1) граница области D содержит прямолинейный отрезок γ ;

2) на множестве $D \cup \gamma$ определена непрерывная функция w = f(z), осуществляющая отображение области D на область D^* :

- 3) при отображении w = f(z) прямолинейный отрезок γ границы области D переходит в прямолинейный отрезок Γ границы области D^* .
- Тогда 1) если f(z) аналитична в области D, то она аналитична в области D^* :
- 2) области D и D^* симметричны относительно прямой, содержащей отрезок γ ;
- 3) различные точки z_1 , z_2 из D симметрично отображаются в различные точки w_1 и w_2 из D^* соответственно.

Тема 4 Интегрирование функции комплексной переменной

- 4.1 Интеграл от функции комплексной переменной.
- 4.2 Свойства интегралов по комплексной переменной.
- 4.3 Основная теорема Коши.
- 4.4 Теорема Коши для многосвязной области
- 4.1 Интеграл от функции комплексной переменной

Пусть w=f(z) — однозначная функция комплексной переменной z, определенная на некоторой гладкой кривой Γ с началом в точке z_0 и концом в точке z_1 . Кривая Γ может быть как замкнутой, так и незамкнутой. Направление движения по кривой Γ от начальной точки z_0 к конечной точке z_1 называется положительным направлением на кривой Γ и обозначается через Γ^+ . Противоположное направление на кривой Γ называется отрицательным и обозначается Γ^- .

Разобьем кривую Γ на n частичных дуг произвольно выбранными точками ξ_0 , ξ_1 , ξ_2 , ..., ξ_{n-1} , ξ_n , $\xi_n=z_1$, расположенными последовательно в положительном направлении кривой Γ причем $\xi_0=z_0$, (рисунок 8). На каждой частичной дуге $\xi_k\xi_{k+1}$, $k=0,1,\cdots,n-1$, выберем произвольную точку ξ_κ^* и составим инте-

гральную сумму
$$\sum_{k=0}^{n-1} f\left(\xi_{\kappa}^*\right) \Delta \xi_{\kappa}$$
 , где $\Delta \xi_{\kappa} = \xi_{\kappa+1} - \xi_{\kappa}$.

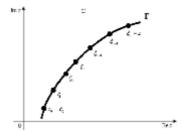


Рисунок 8 – Разбиение кривой Г

Интегралом от функции f(z) вдоль кривой Γ в выбранном направлении называется предел $\lim_{\max|\Delta\xi_{\kappa}|\to 0}\sum_{k=0}^{n-1}f\left(\xi_{\kappa}^{*}\right)\Delta\xi_{k}$, не зависящий от способа разбиения кривой Γ на частичные дуги $\xi_{\kappa}\xi_{\kappa+1}$ и от выбора точек ξ_{κ}^{*} , $k=0,1,\cdots,n-1$:

$$\int_{\Gamma} f(z) dz = \lim_{\max|\Delta \xi_{\kappa}| \to 0} \sum_{k=0}^{n-1} f(\xi_{\kappa}^{*}) \Delta \xi_{k}.$$

Если для функции f(z), определенной на кривой Γ , данный предел существует, то говорят, что функция f(z) интегрируема по кривой Γ . Кривая Γ называется путем или контуром интегрирования.

Интеграл от функции f(z) в положительном направлении кривой Γ обозначается $\int_{\Gamma^+} f(z)dz$, в отрицательном $-\int_{\Gamma^-} f(z)dz$, в случае замкнутого контура $\Gamma-\iint_{\Gamma} f(z)dz$.

T e o p e m a 1 E cли функция <math>f(z) непрерывна на гладкой кривой Γ , заданной параметрическими уравнениями x = x(t), y = y(t), $\alpha \le t \le \beta$, а начальная и конечная точка дуги соответствуют значениям $t = \alpha$ и $t = \beta$, то интеграл существует $\int_{\Gamma} f(z) dz$ и справедлива формула

$$\int_{\Gamma} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt, \ z(t) = x(t) + iy(t).$$

Теорема 2 (связь с криволинейным интегралом 2-го рода) Если функция f(z) непрерывна на гладкой кривой Γ , то интеграл $\int_{\Gamma} f(z)dz$ существует и справедлива формула $\int_{\Gamma} f(z)dz = \int_{\Gamma} u(x,y)dx - v(x,y)dy + i\int_{\Gamma} v(x,y)dx + u(x,y)dy \, .$

4.2 Свойства интегралов по комплексной переменной

Интегралы от функций комплексной переменной обладают свойствами:

— линейность: если функции f(z) и g(z) непрерывны на кусочно-гладкой кривой Γ , то для любых c_1 , $c_2 \in \square$ имеет место равенство:

$$\iint_{\Gamma} \left[c_1 f(z) \pm c_2 g(z) \right] dz = c_1 \iint_{\Gamma} f(z) dz \pm c_2 \iint_{\Gamma} g(z) dz ;$$

- ориентированность: пусть Γ^+ и Γ^- – один и тот же путь интегрирования, проходимый соответственно в положительном или отрицательном направлении кусочно-гладкой кривой Γ , и функция f(z) непрерывна на этой кривой. Тогда

$$\int_{\Gamma^+} f(z)dz = -\int_{\Gamma^-} f(z)dz;$$

— $a\partial\partial umu$ вность: пусть кривая Γ состоит из кусочно-гладких кривых $\Gamma_1,\Gamma_2,\cdots,\Gamma_n$ и функция f(z) непрерывна на Γ . Тогда

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz + \dots + \int_{\Gamma_n} f(z)dz;$$

причем направление на кривых Γ_k , k=0,1,2,...,n-1, совпадает с направлением на кривой Γ ;

- если Γ произвольная кусочно-гладкая кривая с началом z_0 и концом z_1 , то $\int\limits_{\Gamma} dz = z_1 z_0$;
- если Γ гладкая кривая, замкнутая или незамкнутая, имеющая длину L , то $\int\limits_{\Gamma} \! |dz| = \! L$;

— оценка интеграла: для любой функции f(z), непрерывной на гладкой кривой Γ , справедливо неравенство:

$$\left| \int_{\Gamma} f(z) dz \right| \leq \int_{\Gamma} |f(z)| |dz|;$$

- если $|f(z)| \le M$, то во всех точках гладкой кривой Γ длины

$$L$$
 справедливо неравенство: $\left| \int_{\Gamma} f(z) dz \right| \leq M \cdot L$.

4.3 Основная теорема Коши

дующим условиям:

Пусть функция f(z) является аналитической в односвязной области D.

T е o p е m а 3 (K o w u) E сли функция f (z) аналитическая в области D, ограниченной контуром Γ , u γ — замкнутый контур в D, то $\iint f(z)dz = 0$.

Если при этом
$$f(z)$$
 непрерывна в \bar{D} , то $\iint_{\Gamma} f(z) dz = 0$.

4.4 Теорема Коши для многосвязной области Пусть f(z) – аналитическая функция в n-связной области D, внешней границей которой является замкнутый кусочно-гладкий контур γ_0 . И пусть $\gamma_1, \gamma_2, \cdots, \gamma_{n-1}$ – система замкнутых кусочногладких кривых, лежащих в области D и удовлетворяющих сле-

- кривые γ_k , $k=0,1,\cdots,n-1$, принадлежат внутренности γ_0 ;
- для любого m , $m=0,1,\cdots,n-1$, кривые γ_k при $k\neq m$ лежат во внешности γ_m ;
- многосвязная область D получается из односвязной области, ограниченной замкнутой кривой γ_0 , если из нее удалить односвязные области, ограниченные замкнутыми кривыми γ_k .

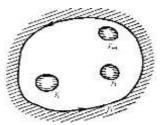


Рисунок 9 — Многосвязная область D

Обозначим через Γ систему контуров, составленную из замкнутой кривой γ_0 , проходимой в положительном направлении, и замкнутых кривых γ_k , $k=0,1,\cdots,n-1$, проходимых в отрицательном направлении (рисунок 9):

$$\Gamma = \gamma_0^+ + \gamma_1^- + \gamma_2^- + \dots + \gamma_{n-1}^-$$
.

Teopema 4 Пусть функция f(z) является:

- 1) аналитической функцией в многосвязной области D, ограниченной системой контуров $\Gamma = \gamma_0^+ + \gamma_1^- + \gamma_2^- + \cdots + \gamma_{n-1}^-$,
 - 2) непрерывной в $ar{D}$. Тогда

$$\iint_{\Gamma} f(z) dz = 0.$$

Из теоремы 4 следует:

$$\iint\limits_{\gamma_0^+} f(z)dz = \iint\limits_{\gamma_1^+} f(z)dz + \iint\limits_{\gamma_2^+} f(z)dz + \dots + \iint\limits_{\gamma_{n-1}^+} f(z)dz \ .$$

 Теорема 5 Пусть $f(z)$ — аналитическая функция в одно-

Teopema 5 Пусть <math>f(z) — аналитическая функция в односвязной области D. Тогда интеграл от функции f(z) не зависит от пути интегрирования, а зависит лишь от начальной точки z_0 и конечной точки z пути интегрирования.

Тема 5 Интегральная формула Коши

- 5.1 Первообразная и неопределенный интеграл.
- 5.2 Формула Ньютона-Лейбница.
- 5.3 Интегральная формула Коши.
- 5.4 Интеграл типа Коши.
- 5.1 Первообразная и неопределенный интеграл

Пусть функция f(z) определена в области D (односвязной или многосвязной). Первообразной функции f(z) в области D называется такая функция F(z), что в каждой точке $z \in D$ выполняется равенство F'(z) = f(z).

 $Teopema\ 1\ Ecлu\ F(z)$ — первообразная функции f(z) в области D, то совокупность всех первообразных функции f(z) определяется формулой F(z)+c, где $c\in\mathbb{C}$.

Совокупность всех первообразных F(z), функции f(z) называется *неопределенным интегралом* от функции f(z) и обозначается: $\int f(z)dz = F(z) + c$.

5.2 Формула Ньютона-Лейбница

 $Teopema\ 2\ (\phi opmyna\ H$ ьютона-Лейбница) Если функция f(z) является аналитической в односвязной области D, то интеграл от f(z) вдоль любого кусочно-гладкого контура, соединяющего две любые точки z_0 и z_1 этой области и лежащего целиком в ней, равен

$$\int_{z_0}^{z_1} f(\zeta) d\zeta = F(z_1) - F(z_0).$$

Интегралы от элементарных функций комплексной переменной в области их аналитичности вычисляются с помощью тех же формул и методов, что и в случае действительной переменной.

Замена переменной в интегралах от функций комплексной переменной производится аналогично случаю функции действительной переменной. Пусть аналитическая функция $z = \varphi(w)$ отображает взаимно однозначно контур γ в плоскости W на контур Γ в плоскости \mathbb{C} . Тогда справедлива формула замены переменной:

$$\int_{\Gamma} f(z) dz = \int_{\gamma} f(\varphi(w)) \varphi'(w) dw$$

Если путь интегрирования является полупрямой, выходящей из точки z_0 , или окружностью с центром в точке z_0 , то целесообразно использовать замену $z-z_0=re^{i\varphi}$. В первом случае $\varphi={\rm const}$, а

r — действительная переменная интегрирования, во втором случае r = const , а ϕ — действительная переменная интегрирования.

 $Teopema\ 3\ (интегральная\ формула\ Koшu)$ Пусть функция f(z) аналитична в области D. Тогда для любой точки $z_0\in D$ справедливо равенство

$$f(z_0) = \frac{1}{2\pi i} \iint_{\Gamma^+} \frac{f(z)}{z - z_0} dz,$$

где Γ – кусочно-гладкий замкнутый контур, целиком лежащий в области D и охватывающий точку z_0 .

теоремы 1, называется *интегралом Коши* функции f(z).

Если в условиях теоремы точка z_0 расположена вне области, ограниченной контуром Γ , то

$$\frac{1}{2\pi i} \iint_{\mathbb{T}^1} \frac{f(z)}{z - z_0} dz = 0.$$

Teopema 4 (о cpedhem) Значение аналитической функции f(z) в любой точке z_0 области D, в которой функция f(z) является аналитической, равно среднему арифметическому ее значений на любой окружности с центром в точке z_0 , целиком лежащей в области D.

Пусть функция f(z) = u(x,y) + iv(x,y) аналитическая в односвязной области D. Если в области D постоянна действительная часть u(x,y) функции f(z) или постоянен модуль функции f(z), то функция f(z) постоянна в области D.

Teopema 5 (о максимуме модуля) Пусть функция f(z), не равная тождественно постоянной, является аналитической в области D и непрерывна в \bar{D} . Тогда максимальное (минимальное) значение модуля |f(z)| достигается только на границе области \bar{D} .

Другими словами, модуль |f(z)| не может достигать максимума (минимума) внутри области D кроме случая, когда f(z) = const .

5.4 Интеграл типа Коши

Пусть в плоскости $\mathbb C$ задана произвольная кусочно-гладкая кривая Γ (замкнутая или незамкнутая) и на ней — произвольная непрерывная функция f(z).

Интеграл

$$\Phi(\zeta) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - \zeta} dz,$$

где ζ — произвольная точка комплексной плоскости, не лежащая на кривой Γ , называется *интегралом типа Коши*. Интеграл Коши является частным случаем интеграла типа Коши.

Teopema 6 Пусть Γ – кусочно-гладкая кривая, расположенная в комплексной плоскости $\mathbb C$ и f(z) – непрерывная функция на этой кривой. Тогда функция $\Phi(\zeta)$ является: а) аналитической в любой области D комплексной плоскости $\mathbb C$, не содержащей точек кривой Γ , б) бесконечно дифференцируемой в области D, причем ее производная любого порядка n может быть получена по формуле

$$\Phi^{(n)}(\zeta) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-\zeta)^{n+1}} dz.$$

Следствие 1 Производные любого порядка от функции $\Phi(\zeta)$, аналитической в области D, также являются аналитическими в этой области.

C л е д c т в и е 2 Пусть f(z) аналитическая в области D функция и на ее границе Γ . Тогда функция f(z) бесконечно дифференцируема в этой области и ее производная n-го порядка в точке $z_0 \in D$ находится по формуле

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma^+} \frac{f(z)}{(z-z_0)^{n+1}} dz, \quad n=1, 2, \dots$$

C л е д с m в и е 3 B любой точке z области D, в которой функция f(z) является аналитической, справедливы неравенства Коши

$$|f^{(n)}(z)| \le \frac{n! M(\rho)}{\rho^n}, n = 1, 2, ...,$$

где ho — радиус произвольной окружности $c_{
ho}$ с центром в точке z_0 , целиком лежащей в области D; M(
ho) — наибольшее значение модуля функции f(z) на окружности $c_{
ho}$.

 $Teopema\ 7\ (Koшu-Лиувилля)$ Если функция f(z) аналитична во всей комплексной плоскости \square и ограничена по модулю, то она постоянна.

Teopema 8 (Mopepa) Если функция f(z) непрерывна в области D и интеграл $\int_{\Gamma} f(z)dz = 0$ по любому замкнутому кусочно-гладкому контуру Γ , лежащему в области D, то f(z) является аналитической функцией в области D.

Из условия теоремы следует, что в области D интеграл $\int\limits_{z_0}^z f\left(\zeta\right) d\zeta$ не зависит от пути Γ интегрирования, соединяющего фиксированную точку z_0 с произвольной точкой z (z_0 и z лежат в области D) и определяет аналитическую функцию z

$$F(z) = \int_{z}^{z} f(\zeta) d\zeta,$$

для которой $F'(z) = f(z), z \in D$.

Тема 6 Ряды аналитических функций

- 6.1 Числовые ряды с комплексными членами.
- 6.2 Функциональные ряды.
- 6.3 Равномерная сходимость функциональных рядов.
- 6.4 Степенные ряды.
- 6.1 Числовые ряды с комплексными членами Ряд

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots ,$$

где $a_k \in \mathbb{C}$, называется *числовым рядом с комплексными членами*, a_k – общим членом ряда.

Если положить $a_k=\alpha_k+i\beta_k$, $k\in\mathbb{N},\ \alpha_k$, $\beta_k\in\mathbb{C},$ то ряд с комплексными членами запишется в виде $\sum_{k=1}^\infty \alpha_k+i\beta_k$.

Сумма $S_n = \sum_{k=1}^n \alpha_k + i\beta_k$ называется *частичной* суммой ряда, а

сумма $r_n = \sum_{k=n+1}^{\infty} \alpha_k + i\beta_k$ называется *остатком* ряда.

Ряд $\sum_{k=1}^{\infty} \alpha_k + i\beta_k$ называется *сходящимся*, если существует пре-

дел последовательности частичных сумм (S_n) :

$$\lim_{n\to\infty} S_n = S ,$$

комплексное число S называется $\mathit{суммой}$ ряда.

Если ряд $\sum_{k=1}^{\infty} \alpha_k + i \beta_k$ сходится, то его общий член $\alpha_k + i \beta_k$

стремится к нулю при $k \to \infty$:

$$\lim_{k\to\infty} (\alpha_k + i\beta_k) = 0.$$

В случае сходимости ряда $\sum_{k=1}^{\infty} \alpha_k + i\beta_k$ его остаток r_n стремится к нулю при неограниченном возрастании n. Добавление или отбрасывание конечного числа членов ряда не влияет на сходимость ряда.

Ряд $\sum_{k=1}^{\infty} \alpha_k + i \beta_k$ называется *абсолютно сходящимся*, если сходится ряд с действительными положительными членами $\sum_{k=1}^{\infty} \left| \alpha_k + i \beta_k \right|$. В случае абсолютной сходимости ряда $\sum_{k=1}^{\infty} \alpha_k + i \beta_k$ имеем абсолютную сходимость рядов $\sum_{k=1}^{\infty} \alpha_k$ и $\sum_{k=1}^{\infty} \beta_k$.

Очевидно, ряд $\sum_{k=1}^\infty \alpha_k + i \beta_k$ сходится тогда и только тогда, когда сходится каждый из рядов $\sum_{k=1}^\infty \alpha_k$ и $\sum_{k=1}^\infty \beta_k$. При этом $S = S_1 + i S_2$, где S_1 — сумма ряда $\sum_{k=1}^\infty \alpha_k$, S_2 — сумма ряда $\sum_{k=1}^\infty \beta_k$.

Данное утверждение позволяет проводить исследование сходимости рядов с комплексными членами, основываясь на сходимости рядов с действительными членами. Для исследования применяются признаки сравнения рядов, Даламбера, Коши и другие достаточные признаки сходимости рядов.

6.2 Функциональные ряды

Ряд $\sum_{k=1}^{\infty} u_k(z)$, членами которого являются функции $u_k(z)$ комплексной переменной z, называется функциональным рядом.

Точка z_0 называется *точкой сходимости* ряда $\sum_{k=1}^\infty u_k(z)$, если сходится соответствующий числовой ряд $\sum_{k=1}^\infty u_k(z_0)$. Функциональный ряд $\sum_{k=1}^\infty u_k(z)$ называется *сходящимся в области* D, если он сходится в каждой точке этой области. Совокупность всех точек сходимости называется *областью сходимости* функционального ряда. В общем случае область сходимости ряда $\sum_{k=1}^\infty u_k(z)$ может быть многосвязной и замкнутой.

Суммой функционального ряда $\sum_{k=1}^{\infty}u_k\left(z\right)$ в области D называется функция $f\left(z\right)$, которая в каждой точке $z_0\in D$ равна значению соответствующего числового ряда $\sum_{k=1}^{\infty}u_k\left(z_0\right)$:

$$f(z_0) = \sum_{k=1}^{\infty} u_k(z_0).$$

Другими словами, функция f(z) является суммой функционального ряда $\sum_{k=1}^{\infty}u_{k}(z)$ в точке z_{0} области D, если для любого $\varepsilon>0$ можно указать такой номер N, что $\left|f(z_{0})-\sum_{k=1}^{\infty}u_{k}(z_{0})\right|<\varepsilon$ при n>N. В общем случае номер N зависит от выбора значений ε и точек z_{0} .

6.3 Равномерная сходимость функциональных рядов

Ряд $\sum_{k=1}^{\infty}u_k\left(z\right)$ называется *равномерно сходящимся* к функции $f\left(z\right)$ в области D, если для любого $\varepsilon>0$ можно указать такой номер N, что $\left|f\left(z_0\right)-\sum_{k=1}^{\infty}u_k\left(z_0\right)\right|<\varepsilon$ при n>N и \forall $z\in D$. Значение N зависит только от ε и одинаково для любых $z\in D$.

Teopema 1 (критерий Коши) Функциональный ряд $\sum_{k=1}^{\infty}u_{k}(z)$ равномерно сходится в области D тогда и только тогда, когда для любого $\varepsilon>0$ существует такой номер $N\in \square$, что для любых k>N и $p\in \square$ выполняются неравенства:

$$\left|u_{k+1}\left(z\right)+u_{k+2}\left(z\right)+\ldots+u_{k+p}\left(z\right)\right|<\varepsilon\;,\;\;\forall\;\;z\in D\;.$$

Теорема 2 (признак Вейерштрасса) Пусть

1) функциональный ряд $\sum_{k=1}^{\infty} u_k(z)$ сходится в области D;

2) члены ряда удовлетворяют неравенствам

$$|u_k(z)| \le a_k, \forall k \in \mathbb{N}, \forall z \in D;$$

3) ряд
$$\sum_{k=1}^{\infty} a_k$$
 сходится.

Тогда функциональный ряд $\sum_{k=1}^{\infty}u_k(z)$ сходится абсолютно и равномерно в области D.

Ряд
$$\sum_{k=1}^{\infty}a_{k}$$
 называется мажорантным рядом для $\sum_{k=1}^{\infty}u_{k}\left(z\right) .$

Равномерно сходящиеся функциональные ряды обладают *свойствами*:

- непрерывность: сумма равномерно сходящегося в области D ряда, состоящего из непрерывных функций, есть функция, непрерывная в области D;
- интегрирование: равномерно сходящийся в области D ряд непрерывных функций можно интегрировать вдоль любой кусочно-гладкой кривой Γ , целиком лежащей в области D, и справедлива формула

$$\int_{\Gamma} \left(\sum_{k=1}^{\infty} u_k(z) \right) dz = \sum_{k=1}^{\infty} \int_{\Gamma} u_k(z) dz;$$

 $- \partial u \phi \phi$ еренцирование равномерно сходящийся в области D ряд аналитических функций можно дифференцировать любое число раз в области D и справедлива формула

$$\frac{d^{n}}{dz^{n}}\left(\sum_{k=1}^{\infty}u_{k}\left(z\right)\right)=\sum_{k=1}^{\infty}u_{k}^{(n)}\left(z\right).$$

6.4 Степенные ряды Ряд вида

$$\sum_{k=0}^{\infty} c_k \left(z - z_0 \right)^k$$

называется *степенным рядом* по степеням $(z-z_0)$. Здесь $c_k \in \mathbb{C}$ – коэффициенты ряда, $z_0 \in \mathbb{C}$ – фиксированная точка.

$$Teopema$$
 3 (Абеля) Если степенной ряд $\sum_{k=0}^{\infty} c_k \left(z-z_0\right)^k$

сходится в точке z_1 , то он сходится во всех точках z, удовле-

творяющих условию $|z-z_0|<|z_1-z_0|$, причем сходимость будет равномерной в любом круге $|z-z_0|\leq R$, $R<|z_1-z_0|$. Если степенной ряд $\sum_{k=0}^{\infty}c_k\left(z-z_0\right)^k$ расходится в точке z_2 , то он расходится во всех точках z, удовлетворяющих условию $|z-z_0|>|z_2-z_0|$.

Для степенного ряда $\sum_{k=0}^{\infty} c_k \left(z-z_0\right)^k$, имеющего как точки сходимости (кроме z_0 , где ряд всегда сходится), так и точки расходимости, всегда существует такое действительное число R>0, что внутри круга $\left|z-z_0\right| < R$ ряд сходится, а вне этого круга — расходится.

Область $|z-z_0| < R$ называется *кругом сходимости*, а число R – *радиусом сходимости* степенного ряда.

Радиус сходимости *R* вычисляется:

– по формуле Коши-Адамара
$$R = \frac{1}{\overline{\lim_{k \to \infty}} \sqrt[k]{|c_k|}}$$
,

— по формуле
$$R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|$$
 , если этот предел существует.

Если
$$R=0$$
, то ряд $\sum_{k=0}^{\infty} c_k \left(z-z_0\right)^k$ сходится лишь в точке z_0 ;

если $R=\infty$, то ряд сходится на всей комплексной плоскости $\mathbb C.$

Внутри круга сходимости
$$|z-z_0| < R$$
 ряд $\sum_{k=0}^{\infty} c_k \left(z-z_0\right)^k$ сходится к аналитической функции.

Степенной ряд внутри круга сходимости можно почленно интегрировать и почленно дифференцировать любое число раз. При этом радиус сходимости каждого вновь полученного ряда равен радиусу сходимости исходного ряда, а над суммой ряда выполняется то же действие, что и над самим рядом.

Тема 7 Ряды Тейлора и Лорана

- 7.1 Ряд Тейлора.
- 7.2 Основные разложения элементарных функций в ряд Маклорена.
 - 7.3 Ряд Лорана.
 - 7.4 Область сходимости ряда Лорана.

7.1 Ряд Тейлора

 $Teopema\ 1\ (Teйлopa)\ \Phi$ ункция f(z), однозначная и аналитическая в круге $|z-z_0| < R$, единственным образом разлагается в этом круге в ряд Тейлора

$$f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k,$$

ede
$$c_0 = f(z_0), c_k = \frac{f^{(k)}(z_0)}{k!}, k = 0, 1, 2, \dots$$

Коэффициенты c_k , учитывая интеграл типа Коши (практическое занятие 5), можно вычислять по формулам

$$c_k = \frac{1}{2\pi i} \iint_{c_0} \frac{f(z)dz}{(z-z_0)^{k+1}}, \ k = 1, 2, \dots,$$

где $\,c_{_{
ho}}\,$ – произвольная окружность с центром в точке $\,z_{_{\! 0}}\,$.

Говорят, что функция f(z) голоморфна в точке z_0 , если она в некоторой окрестности этой точки раскладывается в ряд по степеням $(z-z_0)$. Функция, голоморфная в каждой точке области D, называется голоморфной в этой области.

Особой точкой функции f(z) называется точка, в которой функция не является аналитической.

7.2 Основные разложения элементарных функций в ряд Маклорена

При $z_0 = 0$ имеет место ряд Маклорена:

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} \cdot z^{k}.$$

Разложения в ряд Маклорена некоторых элементарных функций комплексной переменной аналогичны разложениям в ряд Тейлора функций действительной переменной:

$$e^{z} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots, \quad z \in \mathbb{C},$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots + (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!} + \dots, \quad z \in \mathbb{C},$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \dots + (-1)^{n-1} \frac{z^{2n}}{(2n)!} + \dots, \quad z \in \mathbb{C},$$

$$\ln(1+z) = z - \frac{z^{2}}{2} + \frac{z^{3}}{3} - \dots + (-1)^{n-1} \frac{z^{n}}{n} + \dots, \quad |z| < 1,$$

$$(1+z)^{m} = 1 + \frac{m}{1!} z + \frac{m(m-1)}{2!} z^{2} + \dots, \quad |z| < 1.$$

Ряд Тейлора для многозначной функции получается из разложения соответствующей однозначной функции путем прибавления к нему чисел $2\pi i k$, $k \in \mathbb{N}$.

 $Teopema~2~(\phi opmyna~\Im inepa)$ Для функции $e^{iz}~cnpa-$ ведливо равенство:

$$e^{iz} = \cos z + i \sin z$$
.

7.3 Ряд Лорана Рядвида

$$\sum_{k=-\infty}^{\infty} c_k \left(z - z_0 \right)^k ,$$

называется *рядом Лорана*. Здесь $k \in \mathbb{N}, z_0$ — фиксированная точка комплексной плоскости; z — переменная точка; $c_k \in \mathbb{C}$ — $\kappa o \ni \phi \phi u$ -*циенты* ряда.

Ряд Лорана представляет собой сумму двух рядов

$$\sum_{k=-\infty}^{\infty} c_k \left(z-z_0\right)^k = \sum_{k=1}^{\infty} c_{-k} \left(z-z_0\right)^{-k} + \sum_{k=0}^{\infty} c_k \left(z-z_0\right)^k \,.$$

Ряд $\sum_{k=1}^{\infty} c_{-k} \left(z-z_0\right)^{-k}$ называется главной частью, ряд

$$\sum_{k=0}^{\infty} c_k \left(z-z_0\right)^k - nравильной частью ряда Лорана.$$

7.4 Область сходимости ряда Лорана

Заменой переменной $\xi=\frac{I}{z-z_0}$ главная часть ряда Лорана преобразуется в степенной ряд, который сходится к аналитической функции $\varphi(\xi)$ в круге $|\xi|<\rho$. Возвращаясь к переменной z , имеем, что главная часть сходится к функции $f_1(z)=\varphi\left(\frac{1}{z-z_0}\right)$ в об-

ласти $|z-z_0| > \frac{1}{\rho}$. Область сходимости представляет собой внеш-

ность круга радиуса $R_{_{1}}=\frac{1}{\rho}\,$ с центром в точке $z_{_{0}}$.

Правильная часть ряда Лорана представляет собой степенной ряд, поэтому его областью сходимости является круг радиуса R_2 с центром в точке z_0 . Внутри этого круга ряд сходится к некоторой аналитической функции $f_2(z)$.

Если $R_1 < R_2$, то существует общая область сходимости рядов, составляющих ряд Лорана. Внутри кольца $R_1 < \left|z-z_0\right| < R_2$ ряд Лорана сходится к некоторой аналитической функции $f\left(z\right) = f_1\left(z\right) + f_2\left(z\right)$. Если $R_1 > R_2$, то ряд Лорана расходится.

Областью сходимости ряда Лорана называется общая часть сходимости его главной и правильной частей.

T е о p е м а 3 Функция f(z), аналитическая в кольце $R_1<\left|z-z_0\right|< R_2$, однозначно представляется в этом кольце рядом Лорана $\sum_{k=-\infty}^{\infty}c_k\left(z-z_0\right)^k$, где коэффициенты c_k вычисляются по формуле

$$c_k = \frac{1}{2\pi i} \iint_{\Gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz, \ (k=0,\pm 1,\pm 2,...),$$

 Γ — любой замкнутый контур в кольце $R_1 < \left|z-z_0\right| < R_2$, содержащий точку z_0 внутри.

Рядом Лорана для аналитической функции f(z) в окрестности бесконечно удаленной точки $z = \infty$ называется ряд

$$\sum_{k=-\infty}^{\infty} c_k z^k ,$$

сходящийся в кольце $R < |z| < \infty$.

При преобразовании $z=\frac{1}{w}$ точка $z=\infty$ отображается в точку w=0 и окрестность бесконечно удаленной точки — в окрестность точки w=0. В окрестности точки w=0 функция $g\left(w\right)=f\left(\frac{1}{w}\right)$ является аналитической и ее разложение в ряд Лорана есть $g\left(w\right)=\sum_{k=-\infty}^{\infty}c_{k}^{'}w^{k}$. Возвращаясь к прежней переменной $z=\frac{1}{w}$, получаем ряд Лорана для функции $f\left(z\right)$ в окрестности бесконечно удаленной точки $z=\infty$:

$$f(z) = g\left(\frac{1}{z}\right) = \sum_{k=-\infty}^{\infty} c_k z^k,$$

где $c_k = c_{-k}$, $k = 0, \pm 1, \pm 2, \dots$

Тема 8 Классификация изолированных особых точек аналитической функции

- 8.1 Классификация изолированных особых точек аналитической функции.
- 8.2 Разложение функции в ряд Лорана в окрестности изолированной особой точки.
- 8.3 Разложение функции в ряд Лорана в окрестности бесконечно удаленной точки.
- 8.1 Классификация изолированных особых точек аналитической функции

Пусть функция f(z) является аналитической в точке z_0 . Точка z_0 называется *нулем* функции f(z) порядка m, если выполняются условия

$$f(z_0) = 0$$
, $f'(z_0) = 0$, ..., $f^{(m-1)}(z_0) = 0$, $f^{(m)}(z_0) \neq 0$.

При m = 1 точка z_0 называется *простым* нулем.

 $Teopema\ 1\ Toчкa\ z_0$ является нулем порядка m функции f(z), аналитической в точке z_0 , тогда и только тогда, когда в некоторой окрестности точки z_0 имеет место равенство

$$f(z) = (z - z_0)^m \cdot \varphi(z),$$

где $\varphi(z)$ аналитична в точке z_0 и $\varphi(z) \neq 0$.

Точка z_0 называется *изолированной особой точкой* функции f(z), если существует окрестность этой точки, в которой f(z) аналитична всюду, кроме самой точки $z=z_0$.

Изолированная особая точка z_0 функции f(z) называется:

- устранимой особой точкой, если существует конечный предел $\lim_{z\to z_0} f(z) = a\,,\; a\neq \infty\,;$

- *полюсом*, если $\lim_{z \to z_0} f(z) = \infty$;
- существенно особой, если $\lim_{z \to z_0} f(z)$ не существует.

Точка z_0 является полюсом порядка m, если для функции

 $g\left(z\right)=rac{1}{f\left(z
ight)}$ точка z_{0} является нулем порядка m . Полюс по-

рядка m = 1 называется *простым полюсом*.

Teopema~2 Для того чтобы точка z_0 являлась полюсом порядка m функции f(z), необходимо и достаточно, чтобы функцию f(z) можно было представить в виде:

$$f(z) = \frac{\varphi(z)}{(z-z_0)^m},$$

где функция $\varphi(z)$ аналитична в точке z_0 и $\varphi(z_0) \neq 0$.

Аналитическая функция f(z) называется *мероморфной* в области $\bar{D} \subset \mathbb{C}$, если f(z) не имеет в ней других особых точек, кроме полюсов.

8.2 Разложение функции в ряд Лорана в окрестности изолированной особой точки

Пусть аналитическая функция f(z) в окрестности точки z_0 разлагается в ряд Лорана:

$$\sum_{k=-\infty}^{\infty} c_k \left(z - z_0 \right)^k = \sum_{k=0}^{\infty} c_k \left(z - z_0 \right)^k + \sum_{k=1}^{\infty} c_{-k} \left(z - z_0 \right)^{-k}, \ c_k \in \mathbb{C}.$$

Teopema 3 Для того чтобы точка z_0 была устранимой особой точкой функции f(z), необходимо и достаточно, чтобы ряд Лорана функции f(z) не содержал членов с отрицательными степенями разности $(z-z_0)$ (ряд Лорана не содержит главной части).

Teopema 4 Для того чтобы точка z_0 была полюсом функции f(z), необходимо и достаточно, чтобы ряд Лорана функции f(z) содержал конечное число членов с отрицательными степенями разности $(z-z_0)$ (в главной части ряда содержится конечное число членов).

Teopema 5 Для того чтобы точка z_0 была существенно особой точкой функции f(z), необходимо и достаточно, чтобы ряд Лорана содержал бесконечно много членов с отрицательными степенями разности $(z-z_0)$ (в главной части ряда содержится бесконечно много членов с отрицательными показателями).

8.3 Разложение функции в ряд Лорана в окрестности бесконечно удаленной точки

Исследование характера бесконечно удаленной особой точки $z=\infty$ удобнее проводить путем замены $z=\frac{1}{w}$, при которой точка $z=\infty$ переходит в точку w=0. Тогда:

— если в разложении в ряд Лорана функции f(z) нет членов с положительными степенями z, то бесконечно удаленная точка называется устранимой особой точкой функции f(z);

- если в разложении в ряд Лорана функции f(z) есть лишь конечное число членов с положительными степенями z, то бесконечно удаленная точка называется полюсом функции f(z);
- если в разложении в ряд Лорана функции f(z) есть бесконечно много членов с положительными степенями z, то бесконечно удаленная точка называется существенно особой точкой функции f(z).

Функции e^z , $\sin z$, $\cos z$, $\sin z$, $\cot z$ в бесконечно удаленной точке имеют существенную особенность, так как их разложения в ряд Лорана содержат бесконечное множество положительных степеней z.

Тема 9 Вычеты

- 9.1 Понятие вычета.
- 9.2 Вычет относительно бесконечно удаленной точки.
- 9.3 Основная теорема о вычетах.
- 9.4 Логарифмический вычет.

9.1 Понятие вычета

Пусть z_0 изолированная особая точка функции f(z). Вычетом аналитической функции f(z) в изолированной особой точке z_0

называется число, равное значению интеграла
$$\frac{1}{2\pi\,i}\oint\limits_{\Gamma^+}f\!\left(z\right)\!dz$$
 , взя-

тому в положительном направлении по любому замкнутому кусочно-гладкому контуру Γ , лежащему в области аналитичности функции f(z) и содержащему внутри себя единственную особую точку z_0 функции f(z), и обозначается $\mathop{\mathrm{Res}}_{z=z_0} f(z)$:

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{2\pi i} \iint_{\Gamma^+} f(z) dz.$$

Вычет функции f(z) относительно изолированной особой точки z_0 совпадает с коэффициентом c_{-1} разложения функции f(z) в ряд Лорана по степеням $(z-z_0)$: $\mathop{\mathrm{Res}}_{z=z_0} f(z) = c_{-1}$.

Вычет $\mathop{\mathrm{Res}}_{z=z_0} f(z)$ можно найти либо непосредственно по определению

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{2\pi i} \iint_{\Gamma^+} f(z) dz,$$

либо используя разложение в ряд Лорана:

$$\operatorname{Res}_{z=z_0} f(z) = c_{-1}.$$

Рассмотрим вычисление вычетов в различных особых точках.

Пусть z_0 есть устранимая особая точка функции f(z). В этом случае в разложении в ряд Лорана отсутствует главная часть. Поэтому $\underset{z=z_0}{\operatorname{Res}} f(z) = 0$.

Пусть точка z_0 является <u>простым полюсом</u> функции f(z). Тогда вычет находится по формуле

$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \left[(z - z_0) \cdot f(z) \right].$$

Если функция f(z) есть частное двух аналитических в точке z_0 функций $f(z) = \frac{g(z)}{h(z)}$, где $g(z_0) \neq 0$, h(z) имеет простой нуль в точке z_0 , $h(z_0) = 0$, $h'(z_0) \neq 0$, то точка z_0 является простым полюсом функции $f(z) = \frac{g(z)}{h(z)}$ и

$$\operatorname{Res}_{z=z_0} \frac{g(z)}{h(z)} == \frac{g(z_0)}{h'(z_0)}.$$

Пусть точка z_0 является <u>полюсом порядка</u> m функции f(z). Тогда вычет находится по формуле

Res_{z=z₀}
$$f(z) = \frac{1}{(m-1)!} \cdot \lim_{z \to z_0} \frac{d^{m-1} \left[(z-z_0)^m \cdot f(z) \right]}{dz^{m-1}}$$
.

Пусть точка z_0 является существенно особой точкой функции f(z). Тогда для вычисления вычета функции f(z) в этой точке непосредственно определяют коэффициент c_{-1} в разложении функции f(z) в ряд Лорана.

9.2 Вычет относительно бесконечно удаленной точки

Вычет функции f(z) относительно бесконечно удаленной точки $z=\infty$ находится с помощью разложения функции f(z) в ряд Лорана в окрестности этой точки. Поэтому вычет функции f(z) относительно $z=\infty$ равен взятому с противоположным знаком коэффициенту при первой отрицательной степени в разложении Лорана:

$$\operatorname{Res}_{z=\infty} f(z) = -c_{-1}.$$

Вычет аналитической функции относительно бесконечно удаленной устранимой особой точки может оказаться отличным от нуля.

9.3 Основная теорема о вычетах

 $Teopema\ 1$ Если f(z) – функция, аналитическая в каждой точке расширенной плоскости \mathbb{C} , за исключением конечного числа изолированных особых точек, то

$$\sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) + \operatorname{Res}_{z=\infty} f(z) = 0.$$

9.4 Логарифмический вычет

 ${\it Логариф Muческой}$ ${\it производной}$ функции f(z) называется функция

$$\left(\ln f(z)\right)' = \frac{f'(z)}{f(z)}.$$

Логарифмическим вычетом аналитической функции f(z) в точке z_0 называется вычет в этой точке логарифмической производной $(\ln f(z))'$: $\operatorname{Res}(\ln f(z))'$.

Очевидно, что

$$\operatorname{Res}_{z=z_0} \left(\ln f(z) \right)' = \operatorname{Res}_{z=z_0} \frac{f'(z)}{f(z)}.$$

Teopema 2 B нулях и полюсах функции f(z), аналитической e области e0, логарифмическая производная e1 e1 f(z)0 имеет полюсы первого порядка. При этом e2 нуле функции e2 логарифмический вычет равен порядку нуля функции e3, а e4 полюсе равен порядку полюса функции e5, взятому со знаком минус.

Пусть f(z) – мероморфная функция в области D, Γ – замкнутый кусочно-гладкий контур, целиком лежащий в области D и не проходящий через полюсы и нули функции f(z). Логарифмическим вычетом относительно контура Γ называется интеграл

$$\frac{1}{2\pi i} \iint_{\Gamma^+} \frac{f'(z)}{f(z)} dz.$$

Teopema 3 Если N_{Γ} — сумма кратностей нулей функции f(z), лежащих внутри Γ , P_{Γ} — сумма кратностей полюсов функции f(z), лежащих внутри Γ , то

$$\frac{1}{2\pi i} \iint_{\Gamma^+} \frac{f'(z)}{f(z)} dz = N_{\Gamma} - P_{\Gamma}.$$

Тема 10 Приложение вычетов

- 10.1 Вычисление интегралов по замкнутому контуру.
- 10.2 Вычисление несобственных интегралов от рациональных функций.
- 10.3 Вычисление определенных интегралов от тригонометрических функций.
 - 10.4 Суммирование некоторых рядов с помощью вычетов.
- 10.1 Вычисление интегралов по замкнутому контуру

Для вычисления интегралов комплексной переменной по замкнутому контуру используется основная теорема о вычетах.

Tе орема I (основная теорема о вычетах) Если функция f(z) является аналитической на границе Γ области D и всюду внутри области, за исключением конечного числа особых точек z_1, z_2, \ldots, z_n , то

$$\iint_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res} f(z_{k})$$

10.2 Вычисление несобственных интегралов от рациональных функций

Вычисление интегралов $\int\limits_{-\infty}^{+\infty} f(x) dx$ основано на следующей теореме.

Teopema 2 Пусть функция f(x), заданная на всей числовой оси $-\infty < x < +\infty$, может быть аналитически продолжена на верхнюю полуплоскость $\mathrm{Im}\,z \geq 0$. Функция f(z) является аналитической в верхней полуплоскости $\{z \in \mathbb{C} \mid \mathrm{Im}\,z \geq 0\}$ за исключением конечного числа изолированных точек z_1, z_2, \ldots, z_n . И пусть существуют такие положительные числа M, R_0 , δ , что для всех точек верхней полуплоскости, удовлетворяющих условию $|z|=R>R_0$, имеет место оценка $|f(z)|<\frac{M}{|z|^{1+\delta}}$. Тогда несоб-

ственный интеграл $\int\limits_{-\infty}^{+\infty}f(x)dx$ существует и вычисляется по формуле:

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z), \text{ Im } z_k > 0.$$

Пусть $f(x) = \frac{P_m(x)}{O_m(x)}$ – рациональная функция, где $P_m(x)$,

 $Q_n(x)$ — многочлены степеней m и n соответственно. Если функция f(x) непрерывна на всей действительной оси и $n \ge m+2$, то

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \sigma,$$

где σ — сумма вычетов функции $f(z) = \frac{P_m(z)}{Q_n(z)}$ во всех полюсах, расположенных в верхней полуплоскости $\{z \in \mathbb{C} | \text{ Im } z \geq 0 \}$.

10.3 Вычисление определенных интегралов от тригонометрических функций

Рассмотрим интеграл
$$\int_{0}^{2\pi} R(\sin x, \cos x) dx$$
, где $R(\sin x, \cos x)$ –

рациональная функция от $\sin x$ и $\cos x$, ограниченная внутри промежутка интегрирования. С помощью замены

$$e^{ix} = z$$
, $dx = \frac{dz}{iz}$, $\cos x = \frac{z^2 + 1}{2z}$, $\sin x = \frac{z^2 - 1}{2iz}$

данный интеграл сводится к интегралу от рациональной функции F(z) комплексной переменной z по окружности |z|=1. К интегралу $\oint_{|z|=1} F(z) dz$ применима основная теорема о вычетах. Тогда

$$\int_{0}^{2\pi} R(\sin x, \cos x) dx = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} F(z).$$

Интегралы вида
$$\int\limits_0^{+\infty} R(x)\cos\lambda x dx$$
 , $\int\limits_0^{+\infty} R(x)\sin\lambda x dx$, где $R(x)$ —

рациональная функция, $\lambda > 0$ любое действительное число вычисляются с использованием леммы Жордана.

Лемма Жордана Пусть функция g(z) аналитическая в верхней полуплоскости $\{z \in \mathbb{C} \mid \text{Im } z \geq 0 \}$, за исключением конечного числа особых точек, и стремится в этой полуплоскости к нулю при $|z| \to \infty$. Тогда при $\lambda > 0$

$$\lim_{R\to\infty}\int_{C_{0}}g(z)e^{i\lambda z}dz=0,$$

где контур C_R — полуокружность в верхней полуплоскости с центром в точке 0 и радиусом R (рисунок 10).

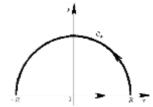


Рисунок 10 – Рисунок к лемме Жордана

10.4 Суммирование некоторых рядов с помо-шью вычетов

Вычисление некоторых рядов с помощью теории вычетов основано на следующих теоремах.

Теорема 3 Пусть:

- 1) f(z) аналитична во всей комплексной плоскости за исключением конечного числа полюсов z_1 , z_2 , ..., z_n (отличных от целых чисел),
- 2) функция f(z) удовлетворяет условию $f(z) = O\left(\frac{1}{z^2}\right)$ при $z \to \infty$. Тогда справедлива формула:

$$\sum_{k=-\infty}^{+\infty} f(k) = -\pi \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} [f(z) \operatorname{ctg}(\pi z)]$$

Теорема 4 Пусть:

- 1) f(z) аналитична во всей комплексной плоскости за исключением конечного числа полюсов z_1 , z_2 , ..., z_n (отличных от целых чисел),
 - 2) функция f(z) удовлетворяет условию

$$f(z) \le e^{a|\operatorname{Im} z|} \varepsilon(|z|) npu \ z \to \infty, \ z \in G_{\rho}, \ 0 \le a < \pi,$$

$$G_{\rho} = \mathbb{C} \setminus \{z \mid |z - z_1| \le \rho, |z - z_2| \le \rho, ..., |z - z_n| \le \rho \}.$$

Тогда справедлива формула:

$$\sum_{k=-\infty}^{+\infty} (-1)^k f(k) = -\pi \sum_{k=1}^n \text{Res}_{z=z_k} \frac{f(z)}{\sin(\pi z)}.$$

Вопросы для самоконтроля

Определения

- 1 Что называется окрестностью точки z_0 ?
- 2 Дайте определение: а) предельной, б) внутренней, в) граничной точки множества $E \subset \square$.
 - 3 Какое множество называется: а) открытым, б) замкнутым?
 - 4 Какая функция называется комплекснозначной?
 - 5 Какая кривая называется кривой Жордана?
 - 6 Дайте определение связного множества.
 - 7 Что называется областью комплексной плоскости?
 - 8 Какая область называется: а) односвязной, б) многосвязной?
- 9 Какое направление обхода границы области называется положительным?
- 10 Сформулируйте определение числовой последовательности комплексных чисел.
- 11 Что называется пределом числовой последовательности комплексных чисел и какими свойствами он обладает?
 - 12 Дайте определение функции комплексной переменной.
- 13 Какая функция называется: а) однозначной, б) многозначной, в) однолистной?
 - 14 Что называется пределом функции комплексной переменной?
- 15 Какая функция комплексной переменной называется непрерывной а) в точке, б) в области?
 - 16 Какая функция называется равномерно-непрерывной?
- 17 Что называется дифференциалом функции комплексной переменной?
- 18 Какая функция называется аналитической: а) в точке, б) в области?
 - 19 Какие функции называются гармоническими?
 - 20 Какое отображение называется конформным?
- 21 Какое направление движения по кривой называется: а) положительным, б) отрицательным?
- 22 Что называется интегралом от функции комплексной переменной?
- 23 Что называется первообразной для функции комплексной переменной?
- 24 Дайте определение неопределенного интеграла для функции комплексной переменной и запишите формулу Ньютона-Лейбница.
 - 25 Какой интеграл называется интегралом типа Коши?
 - 26 Сформулируйте определение ряда комплексных чисел?
- 27 Какой ряд с комплексными числами называется абсолютно схолящимся?

- 28 Какой ряд называется функциональным рядом?
- 29 Что называется точкой сходимости и областью сходимости функционального ряда?
- 30 Какой функциональный ряд называется равномерно сходящимся?
 - 31 Какой ряд называется степенным?
- 32 Что называется: а) радиусом сходимости, б) кругом сходимости степенного ряда?
 - 33 Какой ряд называется рядом Лорана?
 - 34 Что называется областью сходимости ряда Лорана?
- 35 Какая точка называется нулем функции? Что называется кратностью нуля?
 - 36 Какая точка называется изолированной особой точкой?
- 37 Какая изолированная особая точка называется: а) устранимой, б) полюсом, в) существенно особой?
 - 38 Что называется вычетом функции?
 - 39 Что называется логарифмическим вычетом?

Формулировки теорем и формулы

- I Сформулируйте критерий Коши существования предела функции комплексной переменной.
- 2 Как определяются элементарные функции комплексной переменной?
 - 3 Что называется производной функции f(z) в точке?
 - 4 Какая функция называется дифференцируемой в точке?
 - 5 Сформулируйте критерий конформного отображения?
 - 6 Сформулируйте принцип симметриии Римана-Шварца.
- 7 Перечислите свойства интеграла от функции комплексной переменной.
- 8 По какой формуле осуществляется замена переменной в интеграле от функции комплексной переменной?
 - 9 Какими свойствами обладает интеграл типа Коши?
 - 10 Сформулируйте теорему Коши-Лиувилля.
- 11 Перечислите основные свойства равномерно сходящихся функциональных рядов.

Доказательства теорем

- 1 Сформулируйте и докажите необходимое и достаточное условия дифференцируемости.
- 2 Сформулируйте и докажите теорему о связи интеграла от функции комплексной переменной по кривой и криволинейного интеграла 2-го рода?

- 3 Сформулируйте и докажите основную теорему Коши: а) для односвязной области, б) для многосвязной области.
- 4 Сформулируйте и докажите теорему об интегральной формуле Коши.
- 5 Сформулируйте и докажите теорему среднем для функции комплексной переменной.
 - 6 Сформулируйте и докажите теорему Тейлора.
 - 7 Сформулируйте и докажите основную теорему о вычетах.

Вопросы и задачи на понимание

- 1 Как определяется действительная и мнимая части функции комплексной переменной?
 - 2 Для каких функций выполняются условия Коши-Римана?
- 3 По каким формулам вычисляется производная функции комплексной переменной?
 - 4 Является ли аналитическая функция гармонической?
 - 5 В чем состоит геометрический смысл модуля производной?
 - 6 В чем состоит геометрический смысл аргумента производной?
- 7 В чем состоит различие между конформным отображениями 1-и 2-го родов?
 - 8 В чем суть теоремы Римана?
 - 9 В чем суть принцип соответствия границ?
- 10 Для каких путей интегрирования целесообразна замена $z-z_0=re^{i\varphi}$?
- 11 В чем состоит принцип максимума модуля аналитической функции?
 - 12 В чем суть теоремы Морера?
 - 13 Как исследовать ряд комплексных чисел на сходимость?
- 14 Какая сходимость функционального ряда сильнее: точечная или равномерная?
- 15 Когда можно почленно дифференцировать и интегрировать степенные ряды?
 - 16 Как определяется ряд Тейлора для многозначных функций?
- 17 Как определяется ряд Лорана в окрестности бесконечно удаленной точки?
 - 18 Как представима функция, имеющая нуль кратности m?
- 19 Как влияет характер изолированной особой точки на вид ряда Лорана?
 - 20 Как определяется особенность в бесконечно удаленной точке?
- 21 Как вычисляется вычет относительно: а) устранимой точки; б) простого полюса; в) полюса порядка m; г) существенно особой точки; д) бесконечно удаленной точки?

- 22 Как для мероморфной функции вычисляется логарифмический вычет по контуру?
 - 23 Как вычисляются интегралы по замкнутому контуру?
 - 24 Как вычисляются несобственные интегралы?
 - 25 Как вычисляются интегралы вида $\int_{0}^{2\pi} R(\sin x, \cos x) dx?$
- 26 В чем суть леммы Жордана? Для каких интегралов она используется?
- 27 В каких случаях можно вычислить сумму ряда с помощью вычетов?

Раздел 3 Операционное исчисление

Тема 1 Преобразование Лапласа

- 1.1 Оригиналы и их свойства.
- 1.2 Преобразование Лапласа.
- 1.3 Свойства преобразования Лапласа.
- 1.4 Таблица оригиналов и изображений.

1.1 Оригиналы и их свойства

Комплекснозначная функция f(t) называется *оригиналом*, если она удовлетворяет условиям:

- 1) $f(t) \equiv 0$ при t < 0;
- 2) при $t \ge 0$ функция f(t) кусочно-непрерывна;
- 3) при $t\to\infty$ функция f(t) имеет ограниченную степень роста, т. е. существует такое положительное число M и такое неотрицательное число s_0 , что для всех $t\ge 0$ выполняется неравенство:

$$|f(t)| \le M \cdot e^{s_0 t}, M > 0, s_0 \ge 0.$$

Число s_0 называется показателем роста функции f(t).

Если $f_1(t)$, $f_2(t)$, ..., $f_n(t)$ — оригиналы с показателями роста s_1 , s_2 , ..., s_n , то функция $f(t) = c_1 f_1(t) + c_2 f_2(t) + \cdots + c_n f_n(t)$, $c_i \in \mathbb{C}$, является также оригиналом с показателем роста $s_0 = \max \{ s_1, s_2, ..., s_n \}$.

Пусть функция f(t) — оригинал с показателем роста s_0 . Тогда являются оригиналами следующие функции:

- а) |f(t)| с показателем роста s_0 ;
- б) $f_1(t) = f(\alpha \cdot t)$, $\alpha > 0$, с показателем роста $\alpha \cdot s_0$;
- в) $f_2(t) = e^{\lambda t} f(t), \ \lambda \in \mathbb{C}$, показатель роста которой равен

$$s = \begin{cases} s_0 + \operatorname{Re} \lambda, & \text{если } s_0 + \operatorname{Re} \lambda > 0, \\ 0, & \text{если} & s_0 + \operatorname{Re} \lambda < 0; \end{cases}$$

$$r) \ f_3(t) = \begin{cases} 0, & \text{если } t < \tau, \\ f(t-\tau), & \text{если } t \ge \tau, \end{cases}$$

с показателем роста s_0 , $\tau > 0$;

д) $f_4(t) = t^z \cdot f(t)$, $z \in \mathbb{C}$, с показателем роста s_0 ;

г)
$$g(t) = \int_0^t f(z)dz$$
, $0 \le t < \infty$, с показателем роста s_0 .

1.2 Преобразование Лапласа

Изображением (интегралом Лапласа) оригинала f(t) называется несобственный интеграл вида

$$F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt,$$

зависящий от комплексного параметра p.

Преобразованием Лапласа называется операция перехода от оригинала f(t) к изображению F(p).

Соответствие между оригиналом f(t) и изображением F(p) записывается в виде

$$f(t) \doteqdot F(p)$$
.

Пусть функция f(t) оригинал с показателем роста $s_0 > 0$.

Teopema 1 (cy ществование изображения) Для оригинала f(t) с показателем роста $s_0 > 0$ изображение F(p) существует в полуплоскости $Re p = u > s_0$, причем функция F(p) является аналитической в этой полуплоскости.

Теорема 2 (необходимый признак существования изображения) Если функция F(p) является изображением оригинала f(t), то $\lim_{\mathrm{Re}\ p\to\infty}F(p)=0$.

Teopema 3 $(e\partial u + cm e + u + o cm b o p u r u + u + u + u)$ Если функции F(p) и $\Phi(p)$ совпадают, то совпадают между собой и соответствующие оригиналы f(t) и $\varphi(t)$ во всех точках, в которых они непрерывны.

1.3 Свойства преобразования Лапласа

Преобразование Лапласа обладает свойствами:

— линейность: линейной комбинации оригиналов соответствует линейная комбинация изображений, т. е. если $f_1(t) \doteq F_1(p)$ и $f_2(t) \doteq F_2(p)$ и c_1 , c_2 — постоянные числа, то

$$c_1 f_1(t) + c_2 f_2(t) \doteq c_1 F_1(p) + c_2 F_2(p);$$

$$-$$
 подобие: если $f(t) \dot{=} F(p)$ и $\lambda > 0$, то

$$f(\lambda t) \doteq \frac{1}{\lambda} \cdot F\left(\frac{p}{\lambda}\right);$$

– запаздывание: если $f(t) \doteq F(p)$ и $\tau > 0$, то

$$f(t-\tau) \doteq e^{-p\tau} \cdot F(p);$$

– опережение: если f(t) = F(p), то

$$f(t+\tau) \doteq e^{p\tau} \left[F(p) - \int_{0}^{\tau} f(t)e^{-pt} dt \right];$$

- изображение периодической функции: пусть оригинал f(t) имеет период T и он может быть представлен в виде сходящегося ряда

$$f(t) = \sum_{n=0}^{\infty} f_0(t - nT),$$

где
$$f_0(t) = \begin{cases} f(t) & \text{при } 0 < t < T, \\ 0 & \text{при } t < 0 \text{ и } t > T. \end{cases}$$

Тогда

$$\sum_{n=0}^{\infty} f_0(t-nt) \doteq F_0(p) \cdot \frac{1}{1-e^{-pT}};$$

- смещение: если f(t) = F(p) и $a \in \square$, то

$$e^{at} \cdot f(t) \doteq F(p-a);$$

— $\partial u \phi \phi$ еренцирование оригинала: если f(t) = F(p) и функции f'(t), f''(t),..., $f^{(n)}(t)$ являются оригиналами, то для любого k = 1, 2, ..., n

$$f^{(k)}(t) \doteq p^{k} \cdot F(p) - p^{k-1} \cdot f(0) - \dots - f^{(k-1)}(0),$$

в частности $f'(t) \doteq p \cdot F(p) - f(0)$;

– дифференцирование изображения: если f(t) = F(p), то

$$F^{(n)}(p) \doteq (-1)^n \cdot t^n \cdot f(t), \ n = 1, 2, ...;$$

– интегрирование оригинала: если f(t) = F(p), то

$$\int_{0}^{t} f(z)dz \doteq \frac{1}{p} F(p);$$

— интегрирование изображения: если
$$f(t) \doteq F(p)$$
 и интеграл
$$\int\limits_{p}^{\infty} F(\rho) d\rho \, \, \text{сходится, то} \, \int\limits_{p}^{\infty} F(\rho) d\rho \, \dot{=} \, \frac{f(t)}{t} \, ;$$
— пусть $\frac{f(t)}{t}$ — оригинал непрерывный на $0 \leq t < \infty$,
$$f(t) \dot{=} F(p) \, \, \text{и несобственный интеграл} \, \int\limits_{0}^{\infty} \frac{f(t)}{t} dt \, \, \, \text{сходится. Тогда}$$
 имеет место равенство $\int\limits_{0}^{\infty} \frac{f(t)}{t} dt = \int\limits_{0}^{\infty} F(x) dx \, .$

1.4 Таблица оригиналов и изображений Ниже приведены изображения некоторых функций:

$$1 = \frac{1}{p};$$

$$e^{at} \cdot \operatorname{sh} wt = \frac{w}{(p-a)^2 - w^2};$$

$$e^{at} = \frac{1}{p-a};$$

$$e^{at} \cdot \operatorname{ch} wt = \frac{p-a}{(p-a)^2 - w^2};$$

$$t = \frac{1}{p^2};$$

$$t \cdot \sin wt = \frac{2wp}{(p^2 + w^2)^2};$$

$$e^{at} \cdot t^n = \frac{n!}{(p-a)^{n+1}};$$

$$t \cdot \cos wt = \frac{p^2 - w^2}{(p^2 + w^2)^2};$$

$$\sin wt = \frac{w}{p^2 + w^2};$$

$$\cos wt = \frac{p}{p^2 + w^2};$$

$$\cosh wt = \frac{p}{p^2 + w^2};$$

$$\cosh wt = \frac{w}{p^2 - w^2};$$

$$\cosh wt = \frac{w}{p^2 - w^2};$$

$$\cosh wt = \frac{w}{(p-a)^2 + w^2};$$

$$e^{at} \cdot \sin wt = \frac{w}{(p-a)^2 + w^2};$$

$$e^{at} \cdot \cos wt = \frac{p-a}{(p-a)^2 + w^2}.$$

Тема 2 Восстановление оригинала по изображению

- 2.1 Свертка функций.
- 2.2 Интеграл Дюамеля.
- 2.3 Теоремы разложения.
- 2.4. Связь преобразования Лапласа с преобразованием Фурье.

2.1 Свертка функций

— умножение изображений: если $f_1(t) \doteq F_1(p)$, Re $p > s_1$, и $f_2(t) \doteq F_2(p)$, Re $p > s_2$, то

$$F_1(p) \cdot F_2(p) \doteq \int_0^t f_1(\tau) \cdot f_2(t-\tau) d\tau$$
;

- теорема Бореля: свертке оригиналов

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) \cdot f_2(t-\tau) d\tau = \int_0^t f_2(y) \cdot f_1(t-y) dy$$

соответствует произведение изображений

$$f_1(t) * f_2(t) = F_1(p) \cdot F_2(p);$$

– интеграл Дюамеля: если $f(t) \doteq F(p)$ и $g(t) \doteq G(p)$, то

$$pF(p)G(p) \doteq f(0)g(t) + f'(t)*g(t),$$

$$pF(p)G(p) \doteq g(0)f(t)+g'(t)*f(t)$$
.

2.3 Теоремы разложения

Для восстановления оригинала f(t) по заданному изображению F(p) в простейших случаях используется таблица изображений. Дополнительное применение свойств изображений позволяет существенно расширить возможности восстановления оригинала по заданному изображению.

 $Teopema\ 1\ (Pumaha-Meллина)$ Пусть функция f(t) оригинал с показателем роста s_0 , а F(p) — ее изображение. Тогда в любой точке t непрерывности оригинала f(t) справедлива формула Римана-Меллина

$$f(t) = \frac{1}{2\pi i} \int_{u-i\infty}^{u+i\infty} F(p)e^{pt} dp,$$

где интегрирование производится вдоль любой прямой $\operatorname{Re} p = u$, $u > s_0$, и интеграл понимается в смысле главного значения.

Формула Римана-Меллина

$$f(t) = \frac{1}{2\pi i} \int_{u-i\infty}^{u+i\infty} F(p)e^{pt} dp$$

является обратной к формуле $F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt$ и называется обратным преобразованием Лапласа.

В точке $t_{\scriptscriptstyle 0}$, являющейся точкой разрыва 1-го рода функции $f\left(t\right)$, правая часть формулы Римана-Меллина равна

$$\frac{1}{2} \left(f\left(t_0 - 0\right) + f\left(t_0 + 0\right) \right).$$

Непосредственное применение формулы обращения для восстановления оригинала f(t) по изображению F(p) затруднительно. Для нахождения оригинала обычно пользуются теоремами разложения.

 $Teopema\ 2\ (1$ -я теорема разложения) Если функция F(p) в окрестности точки $p=\infty$ может быть представлена в виде ряда Лорана

$$F(p) = \sum_{k=0}^{\infty} \frac{c_k}{p^{k+1}} = \frac{c_0}{p} + \frac{c_1}{p^2} + \frac{c_2}{p^3} + \dots,$$

то функция $f(t) = \sum_{k=0}^{\infty} c_k \cdot \frac{t^k}{k!} = c_0 + c_1 t + c_2 \cdot \frac{t^2}{2!} + \dots$, $t \ge 0$, является

оригиналом, имеющим изображение F(p):

$$F(p) = \sum_{k=0}^{\infty} \frac{c_k}{p^{k+1}} \doteq \sum_{k=0}^{\infty} c_k \cdot \frac{t^k}{k!} = f(t).$$

Вторую теорему разложения можно сформулировать следующим образом.

Teopema 3 (2-я теорема разложения) Если $F(p) = \frac{P(p)}{Q(p)}$ — рациональная правильная несократимая дробь, p_1 ,

 p_2 , ..., p_n – простые или кратные нули знаменателя Q(p), то оригинал f(t), соответствующий изображению F(p), определяется формулой

$$F(p) = \frac{P(p)}{Q(p)} \doteq \sum_{k=1}^{n} \operatorname{Res}_{p=p_{k}} \left[\frac{P(p)}{Q(p)} \right] \cdot e^{p_{k}t} = f(t).$$

В частности, если знаменатель $\,p_1\,,\;p_2\,,\;\dots,\;p_n\,$ – простые полюса, то функция

$$f(t) = \sum_{k=1}^{n} \frac{P(p_k)}{Q'(p_k)} \cdot e^{p_k t}$$

является оригиналом, имеющим изображение F(p).

Teopema 4 Пусть F(p) — функция комплексной переменной p, обладающая свойствами:

- 1) F(p) задана в полуплоскости $\text{Re } p = u > s_0$ и удовлетворяет в ней условиям:
- a) F(p) аналитическая функция в полуплоскости $\operatorname{Re} p = u > s_0$,
- б) в области $\operatorname{Re} p \ge u > s_0$ функция F(p) стремится к нулю $npu \mid p \mid \to \infty$ равномерно относительно $\arg(p s_0)$;
- в) для всех $\operatorname{Re} p=u$, $u>s_0$, несобственный интеграл $\int\limits_{u-i\infty}^{u+i\infty} \left|F\left(p\right)\right| dp \ cxodumcs;$
- $\it r$) может быть аналитически продолжена на всю комплексную плоскость $C_{\it p}$;
- 2) аналитическое продолжение функции F(p) в полуплоскость Re $p \le s_0$ удовлетворяет условиям леммы Жордана.

Тогда имеет место следующее соотношение:

$$f(t) = \frac{1}{2\pi i} \int_{u-i\infty}^{u+i\infty} F(p)e^{pt} dp = \sum_{k=1}^{n} \operatorname{Res}_{p=p_k} F(p) \cdot e^{p_k t},$$

где t>0 и $p=p_k$ — особые точки (полюсы, существенно особые точки) функции, являющейся аналитическим продолжением F(p) в полуплоскость $\text{Re }p\leq s_0,\ k=1,2,\ldots,n$.

2.4. Связь преобразования Лапласа с преобразованием Фурье

Пусть функция f(t) является оригиналом с показателем роста s_0 и имеет конечное число экстремумов. Тогда для нее можно записать интеграл Фурье. При этом имеет место формула:

$$\frac{f(t+0)+f(t-0)}{2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\Phi(\omega)e^{i\omega t}d\omega,$$

где
$$\Phi(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt$$
.

Учитывая, что в интеграле Лапласа параметр $p=u+i\omega$, Re p=u , и для сходимости интеграла выбирается $u>s_0$, то можно записать:

$$F(p) = F(u+i\omega) = \int_{0}^{+\infty} f(t)e^{-pt}dt = \int_{-\infty}^{+\infty} f(t)e^{-ut}e^{-i\omega t}dt.$$

Сравнивая полученный интеграл Лапласа с преобразованием Фурье, видно, что изображение $F(u+i\omega)=F(p)$ есть прямое преобразование Фурье для функции $g(t)=f(t)\cdot e^{-ut}$.

Тема 3 Приложения операционного исчисления

- 3.1 Решение линейных дифференциальных уравнений с постоянными коэффициентами
- 3.2 Решение систем дифференциальных уравнений с постоянными коэффициентами
 - 3.3 Использование операционного исчисления в электротехнике

Пусть имеется линейное дифференциальное уравнение с постоянными коэффициентами

$$a_0 y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = f(t),$$

удовлетворяющее начальным условиям Коши

$$y(0) = c_0, y'(0) = c_1, ..., y^{(n-1)}(0) = c_{n-1},$$

где c_0 , c_1 ,..., c_{n-1} — заданные числа, функция y(t) вместе с ее рассматриваемыми производными и функция f(t) являются оригиналами.

Для того чтобы найти решение y(t) применим к обеим частям дифференциального уравнения преобразование Лапласа, т. е. от оригиналов y(t) и f(t) переходим к изображениям Y(p) и F(p) соответственно. В результате получается операторное уравнение:

$$a_0\Big(p^nY-p^{n-1}c_0-p^{n-2}c_1-...-c_{n-1}\Big)+a_1\Big(p^{n-1}Y-p^{n-2}c_0-...-c_{n-2}\Big)+...+\\ +a_{n-1}\Big(pY-c_0\Big)+a_nY=F$$

Разрешая полученное операторное уравнение относительно Y(p), находим

$$Y(p) = \frac{F(p) + R_{n-1}(p)}{Q_n(p)},$$

где
$$Q_n(p) = a_0 p^n + a_1 p^{n-1} + \ldots + a_n$$
,
$$R_{n-1}(p) = c_0 \Big(a_0 p^{n-1} + a_1 p^{n-2} + \ldots + a_{n-1} \Big) + c_1 \Big(a_0 p^{n-2} + a_1 p^{n-3} + \ldots + a_{n-2} \Big) + \ldots + c_{n-1} a_0 \; .$$

Полученное решение называется *операторным решением* искомого дифференциального уравнения.

Определяя оригинал y(t), соответствующий найденному изображению Y(p), получается искомое решение .

Полученное решение y(t) во многих случаях оказывается справедливым при всех $t \in \mathbb{R}$, а не только при $t \ge 0$.

При нулевых начальных условиях решение операторного уравнения примет вид $Y(p) = \frac{F(p)}{Q_n(p)}$.

Если $\tilde{y}(t)$ – решение дифференциального уравнения

$$y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 1$$

при начальных условиях $y(0)=y'(0)=...=y^{(n-1)}(0)=0$, то решением уравнения $y^{(n)}+a_1y^{(n-1)}+...+a_ny=f(t)$ при тех начальных условиях является функция

$$y(t) = \int_{0}^{t} \tilde{y}'(\tau) f(t-\tau) d\tau.$$

Данная формула позволяет находить решение линейного дифференциального уравнения с постоянными коэффициентами при нулевых начальных условиях, не находя изображения правой части.

Пусть дана система линейных дифференциальных уравнений с постоянными коэффициентами:

$$y_1' + a_{11}y_1 + ... + a_{1n}y_n = f_1(t),$$

 $y_2' + a_{21}y_1 + ... + a_{2n}y_n = f_2(t),$
......,
 $y_n' + a_{n1}y_1 + ... + a_{nn}y_n = f_n(t),$

удовлетворяющая начальным условиям Коши

$$y_1(0) = c_1, y_2(0) = c_2, ..., y_n(0) = c_n,$$

где c_0 , c_1 ,..., c_n — заданные числа, функции $y_1(t)$, $y_2(t)$, ..., $y_n(t)$ вместе с их первыми производными и функции $f_1(t)$, $f_2(t)$, ..., $f_n(t)$ являются оригиналами.

Пусть $y_k(t) \doteq Y_k(p)$, $f_k(t) \doteq F_k(p)$, k = 1, 2, ..., n. Применяя преобразование Лапласа к каждому уравнению системы и учитывая правила дифференцирования оригинала, получим:

или

$$\begin{split} &(p+a_{11})Y_1+a_{12}Y_2...+a_{1n}Y_n=c_1+F_1(t),\\ &a_{21}Y_1+(p+a_{21})Y_1+...+a_{2n}Y_n=c_2+F_2(t),\\ &\vdots\\ &a_{n1}Y_1+a_{n2}Y_2+...+(p+a_{nn})Y_n=c_n+F_n(t). \end{split}$$

Данная система называется *системой операторных* уравнений. Пусть

$$\Delta = \begin{vmatrix} a_{11} + p & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} + p & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} + p \end{vmatrix}$$

есть определитель системы операторных уравнений и Δ_{km} — алгебраические дополнения элементов, находящихся на пересечении k-1 строки и m-го столбца. Если определитель $\Delta \neq 0$, то применяя правило Крамера, получим:

$$Y_{k}(p) = \frac{\sum_{i=1}^{n} (F_{i}(p) + c_{i}) \Delta_{km}}{\Delta}, \ k = 1, 2, ..., n.$$

Для нахождения решения исходной системы определяются оригиналы, соответствующие полученным изображениям.

Если определитель $\Delta=0$, то система операторных уравнений решения не имеет, следовательно, и исходная система не имеет решения.

При помощи операционного исчисления можно находить решения линейных дифференциальных уравнений с переменными коэффициентами, уравнениями в частных производных, уравнений в конечных разностях, проводить суммирование рядов, вычислять интегралы. При этом решение этих и других задач значительно упрощается.

Использование операционного исчисления в электротехнике. Методы операционного исчисления широко используются в электротехнике при исследовании переходных процессов в линейных цепях с сосредоточенными параметрами r, L и C, поскольку явления, происходящие в таких цепях, описываются обыкновенными линейными дифференциальными уравнениями и их системами, которые легко решаются с помощью операционного исчисления.

Переходным процессом называется явление, наблюдающееся в цепи при переходе от одного установившегося режима к другому. Переходные процессы возникают в электрических цепях в результате коммутаций (включения или выключения э. д. с., различных переключений, короткого замыкания в цепи, внезапного изменения параметров в цепи и т. д.). Эти процессы в электрических цепях всегда являются электромагнитными. Они протекают обычно с очень большой скоростью и, как правило, заканчиваются по истечении долей секунды. При этом возможны случаи, когда напряжения и токи цепи или на отдельных ее элементах при переходном процессе значительно превосходят их значения в установившемся режиме. Последнее может привести к выходу из строя некоторых элементов цепи.

При протекании переходных процессов в электрических цепях всегда выполняются законы коммутации (законы переходных процессов):

а) ток в индуктивности L не может измениться скачком. В начальный момент (непосредственно после коммутации) он сохраняет то значение, которое было в момент, непосредственно предшествующий коммутации:

$$i_L(0_+)=i_L(0_-)=i_L(0);$$

б) напряжение на емкости C не может измениться скачком. В начальный момент (непосредственно после коммутации) оно сохраняет то значение, которое было в момент, непосредственно предшествующий коммутации:

$$u_C(0_+) = u_C(0_-) = u_C(0).$$

Значения токов в индуктивностях и напряжений на обкладках конденсаторов в момент времени, непосредственно предшествую-

щий коммутации в цепи, $i_L(0)$ и $u_C(0)$, определяют начальные условия переходного процесса. При расчете переходного процесса в электрической цепи эти условия необходимо выявить до выполнения всех остальных вычислений. Если все $i_{I}(0)$ и $u_{C}(0)$ равны нулю, то в цепи имеют место нулевые начальные условия, а токи в индуктивностях и напряжения на конденсаторах в переходном процессе начнут изменяться от нулевых значений. При ненулевых начальных условиях для определения знаков $i_L(0)$ и $u_C(0)$ надо задаться направлениями обхода контуров цепи, в которых будет происходить переходный процесс. Положительные знаки $i_r(0)$ и $u_{c}(0)$ сохранятся, если их направления совпадают с направлением обхода контура. В противном случае знаки $i_L(0)$ и $u_C(0)$ изменятся на противоположные. Здесь токи в индуктивностях и напряжения на конденсаторах в переходном процессе начнут изменяться от тех значений, которые они имели в момент, непосредственно предшествующий коммутации (с учетом установленных знаков соответствующих величин).

Пусть в электрической цепи, изображенной на рисунке 3. 1, рубильник P переключается из положения 1 в положение 2. Тогда в контуре r, L и C возникнет переходный процесс. Примем, что его начальные условия ненулевые: $i_L(0) \neq 0$ и $u_C(0) \neq 0$. При направлениях тока в индуктивности и напряжения на обкладках конденсатора в начальный момент переходного процесса, показанных на рисунке 11, выбранном направлении обхода контура имеем $i_L(0) > 0$ и $u_C(0) > 0$.

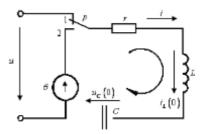


Рисунок 11 – Электрическая цепь

Возьмем направление мгновенного значения тока переходного процесса i = i(t), совпадающие с направлением обхода контура.

Так как направление источника э. д. с. e = e(t), действующего в контуре r, L и C во время переходного процесса, совпадает с направлением обхода этого контура, то по второму закону Кирхгофа получаем уравнение:

$$ri + L\frac{di}{dt} + \frac{1}{C}\int_{0}^{t} idt + u_{C}(0) = e$$
.

Обозначим i(p) = i = I(p) — изображение тока переходного процесса в контуре; e(p) = e = E(p) — изображение внешней э. д. с., действующей в контуре.

Тогда уравнение цепи r , L и C в операторной форме примет вид:

$$rI(p) + L(pI(p) - i_L(0)) + \frac{1}{pC}I(p) + \frac{u_C(0)}{p} = E(p).$$

Это уравнение можно записать так:

$$\left(r + Lp + \frac{1}{pC}\right)I(p) = E(p) + Li_L(0) - \frac{u_C(0)}{p}.$$

Откуда находится выражение для изображения тока переходного процесса в виде:

$$I(p) = \frac{E(p) + Li_L(0) - \frac{u_C(0)}{p}}{r + Lp + \frac{1}{pC}}.$$

Полученная зависимость представляет собой закон Ома в операторной форме. Его можно записать так:

$$I(p) = \frac{F(p)}{Z(p)},$$

где $F(p) = E(p) + Li_L(0) - \frac{u_C(0)}{p}$ — изображение всех (внешних и

внутренних) э. д. с., действующих в контуре; $Z(p) = r + Lp + \frac{1}{pC}$ —

операторное сопротивление контура r , L и C ; $-\frac{u_C(0)}{p}$ — изоб-

ражение начальной э. д. с. емкости (включая знак «минус»), уравновешивающей начальное напряжение на обкладках конденсатора и направленной навстречу $u_C(0)$.

Операторное сопротивление
$$Z(p) = r + Lp + \frac{1}{pC}$$
 контура r , L

и C получено из выражения комплекса полного сопротивления этого контура

$$Z = r + i\omega L + \frac{1}{i\omega C}$$

путем замены $i\omega$ на p, $i^2 = -1$.

Закон Ома в операторной форме позволяет, непосредственно исследовать переходные процессы только в неразветвленных электрических цепях. При рассмотрении переходных процессов в разветвленных и сложных электрических цепях необходимо использовать первый и второй законы Кирхгофа, которые имеют в операторной форме следующий вид:

первый закон –
$$\sum_{k=1}^{n} I_{k}(p) = 0$$
;

второй закон —
$$\sum_{k=1}^{m} Z_{k}(p) I_{k}(p) = \sum_{k=1}^{l} F_{k}(p)$$
.

При составлении уравнений цепи по этим законам «правила знаков» остаются такими же, как и при расчете установившихся режимов в электрических цепях постоянного и переменного тока. В частности, если мгновенное значение тока переходного процесса $i_n(t)$ протекающего в ветви n, принято направленным к заданному узлу (для которого составляется уравнение по первому закону Кирхгофа), то изображение этого тока $I_n(p)$ берется с одним знаком (например, со знаком «плюс»). Если же ток $i_m(p)$ направлен от узла, то его изображение $I_m(p)$ берется с другим знаком (со знаком «минус»).

Составляя уравнения по второму закону Кирхгофа, необходимо учитывать, что кроме внешних э. д. с. $e_k(t) = e_k$ в контурах, содержащих индуктивности и емкости при ненулевых начальных условиях, действуют еще и внутренние э. д. с. (начальные э. д. с.: само-индукции и емкости). Причем, если направление $i_{L_k}(0)$ совпадает с

направлением обхода контура, то слагаемое $L_k i_{L_k}(0)$ следует брать со знаком «плюс», если же и $u_{C_k}(0)$ направлено по обходу конту-

ра, то результирующий знак слагаемого $\frac{u_{C_k}(0)}{p}$ должен быть «ми-

нус», так как начальная э. д. с. емкости всегда направлена навстречу начальному напряжению на обкладках конденсатора $u_C(0)$.

Законы Ома и Кирхгофа в операторной форме имеют тот же вид, что и при установившихся режимах в цепях постоянного и переменного тока. Поэтому, применяя операционное исчисление для расчета переходных процессов, в принципе можно использовать все методы расчета сложных линейных электрических цепей с постоянными параметрами. При исследовании переходных процессов в сложных и разветвленных электрических цепях (в последнем случае при ненулевых начальных условиях) наибольшее применение получили метод уравнений Кирхгофа, метод контурных токов и метод наложения. При расчете переходных процессов в неразветвленных цепях, также в простых разветвленных цепях при нулевых начальных условиях применяется закон Ома в операторной форме. При этом в разветвленной цепи непосредственно определяется только ток переходного режима в ветви, содержащей источник э. д. с. (вся цепь нереально сводится к простой неразветвленной цепи).

Во всех случаях расчета переходных процессов в электрических цепях операторным методом сохраняется такая последовательность операций: сначала определяются начальные условия, затем записывается уравнение или система уравнений для заданной цепи в операторной форме, что позволяет найти изображения искомых токов или напряжений. По полученным изображениям отыскиваются оригиналы — мгновенные значения токов или напряжений переходного режима.

Вопросы для самоконтроля

Определения

- 1 Какая функция называется оригиналом?
- 2 Какой интеграл называется изображением?
- 3 Какая операция называется преобразованием Лапласа?
- 4 Что называется обратным преобразованием Лапласа?

Формулировки теорем и формулы

- 1 Сформулируйте необходимый признак существования изображения?
 - 2 Сформулируйте теорему единственности оригинала?
 - 3 Сформулируйте теорему Римана-Меллина.

Доказательства теорем

- Сформулируйте и докажите теорему о существовании изображения.
 - 2 Сформулируйте и докажите свойства преобразования Лапласа.
 - 3 Сформулируйте и докажите вторую теорему разложения.

Вопросы и задачи на понимание

В чем суть первой теоремы разложения?

- 1 Как связаны между собой преобразование Лапласа и преобразование Фурье?
- 2 Как используется преобразование Лапласа при решении линейных дифференциальных уравнений с постоянными коэффициентами?
- 3 Как используется преобразование Лапласа при решении систем линейных дифференциальных уравнений с постоянными коэффициентами?
- 4 При исследовании каких процессов используется операционное исчисление в электротехнике?