Задания к практическим занятиям

Раздел 1 Числовые множества

Тема 1 Множества

1 Какие элементы множества

$$A = \{-40; -32, 4; -8; -\frac{1}{9}; 0; \frac{5}{7}; 6; 12; 19\frac{2}{9}; 30\}$$

являются натуральными числами, целыми числами, дробными, рациональными числами, отрицательными числами, неотрицательными числами?

2 Составьте подмножества множества

$$B = \{-24; -23\frac{1}{3}; -22; -9; 0; \frac{1}{5}; 2; 5; 9; 10; 12; 24\},$$

элементами которых являются \square , \square , нечетные, четные числа, отрицательные числа, числа кратные 4.

- **3** Какие из следующих утверждений $\square \subset \square$, $\square \subset \square$, $\square \subset \square$, $\square \subset \square$, $\square \subset \square$
 - 4 Укажите пустые множества среди:
 - а) множество целых корней уравнения $x^2 16 = 0$;
 - б) множество целых корней уравнения $x^2 + 16 = 0$;
 - в) множество натуральных чисел, меньших 1.
- **5** Найдите пересечение, объединение, разность множеств из упражнения 1 и 2.
 - 6 Найдите пересечение, объединение, разность множеств

$$A = \left\{ \frac{1}{3^n} \middle| n \in \square \right\}$$
 и $B = \left\{ \frac{1}{10^n} \middle| n \in \square \right\}$.

- **7** Доказать, что $\sqrt{3}$ иррациональное число.
- **8** Докажите, что любую периодическую десятичную дробь, не имеющую цифры 9 в периоде, можно получить как результат деления двух натуральных чисел.

9 Доказать, что
$$0.6(9) = 0.7(0)$$
.

Пример оформления решения

1 Найдите пересечение, объединение, разность множеств

$$A = \left\{ \frac{1}{5^n} \middle| n \in \square \right\} \text{ } \text{ } \text{ } B = \left\{ \frac{1}{25^n}, \middle| n \in \square \right\}.$$

Решение. Поскольку

$$A = \left\{ \frac{1}{5}; \frac{1}{25}; \frac{1}{125}; \frac{1}{625}; \dots \right\} \text{ M } B = \left\{ \frac{1}{25}; \frac{1}{625}; \frac{1}{15625}; \dots \right\},$$

TΩ

$$A \cap B = \left\{ \frac{1}{25}; \frac{1}{625}; \dots \right\} = B, \ A \cup B = \left\{ \frac{1}{5}; \frac{1}{25}; \frac{1}{125}; \frac{1}{625}; \dots \right\} = A,$$
$$A \setminus B = \left\{ \frac{1}{5}; \frac{1}{125}; \dots \right\} = \left\{ \frac{1}{5^{2k-1}} \middle| \ k \in \mathbf{N} \right\}, \ B \setminus A = \emptyset.$$

2 Доказать, что $\sqrt{2}$ – иррациональное число.

Pewehue. Доказываем методом от противного. Допустим, что существует такое рациональное число $\frac{m}{n}$ (несократимая

дробь), квадрат которого равен 2. Тогда
$$\left(\frac{m}{n}\right)^2 = 2$$
 или $m^2 = 2n^2$.

Следовательно, число m^2 есть четное число. Отсюда и m есть четное число. Если m — четное, то оно представимо в виде m=2k. Тогда имеем $n^2=2k^2$. Следовательно, n^2 есть четное число, тогда и n — четное. Таким образом, числа m и n являются четными. Поэтому дробь $\frac{m}{n}$ сократима, что противоречит предположению. Допущение не верно, т.е. не существует рационального числа, квадрат которого равен 2, а, значит, $\sqrt{2}$ — иррациональное число, $\sqrt{2}=1,41421356\dots$

3 Доказать, что 0,4(9) = 0,5(0).

P e u e н u e. Пусть x = 0.4(9).

Тогда
$$100x - 10x = 49, (9) - 4(9) = 45$$
.

Откуда
$$x = \frac{45}{90} = \frac{1}{2} = 0.5 = 0.5(0)$$

Тема 2 Грани числовых множеств

1 Методом математической индукции докажите, что для любого $n \in \square$ справедливо равенство

$$1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
.

2 Доказать, что для любого $n \in \square$ и для любого x > -1 справедливо неравенство Бернулли:

$$(1+x)^n \ge 1 + nx.$$

- **3** Доказать, что для любых положительных чисел $y_1, y_2, \dots y_n$, удовлетворяющих условию $y_1 \cdot y_2 \cdot \dots \cdot y_n = 1$, имеет место неравенство: $y_1 + y_2 + \dots y_n \ge n$.
 - **4** Доказать неравенство для $n \in \square$, $n \ge 2$

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2}$$
.

- **5** Докажите, что множество всех чисел вида $\frac{m}{n}$, где $n,m\in \square$ и n- четное, не имеет наименьшего элемента. Найдите точную нижнюю грань множества.
- **6** Пусть A- множество чисел, противоположных по знаку чисел из множества B . Докажите, что

$$\sup A = -\inf B , \inf A = -\sup B .$$

Пример оформления решения

1 Методом математической индукции докажите, что для любого $n \in \square$ $n \leq 2^{n-1}$.

 $P\,e\, w\,e\, h\, u\, e$. При n=1 неравенство верно т.к. $1 \le 1$. Предположим, что неравенство верно для $k \in \square: k \le 2^{k-1}$. Неравенство верно для (k+1), так как

$$2^{k} = 2^{k-1} \cdot 2 \ge 2 \cdot k \ge k+1$$
.

Последнее неравенство следует из очевидного неравенства: $(k-1)^2 \ge 0$.

Следовательно, неравенство $n \le 2^{n-1}$ верно $\forall n \in \square$.

2 Методом математической индукции докажите, что для любого $n \in \square$ справедливо равенство

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$
.

 $P \, e \, u \, e \, h \, u \, e$. При n = 1 равенство очевидно.

Предположим, что оно верно для натурального числа k:

$$1+2+3+\ldots+k=\frac{k(k+1)}{2}$$
.

Проверим верность утверждения для следующего натурального числа (k+1):

$$1+2+3+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=(k+1)\left(\frac{k}{2}+1\right)=$$
$$=(k+1)\left(\frac{k+2}{2}\right)=\frac{(k+1)(k+2)}{2}$$

Следовательно, утверждение верно для любого $n \in \square$.

3 Найти точную верхнюю грань интервала (0,1).

Pewehue. Так как для любого $x \in (0;1) \Rightarrow x < 1$, то число 1 является верхней гранью. Покажем, что это точная верхняя грань, т.е. для любого $\bar{x} < 1 \; \exists \; a \in (0,1) \colon a > \bar{x}$.

Действительно, если $\overline{x} \le 0$, то $\forall a \in (0;1): a > x$. Если $\overline{x} > 0$, то на интеграле $(\overline{x};1)$ существует действительное число $a: \overline{x} < a < 1$, т.е. $a > \overline{x}$.

Таким образом, для числа 1 выполнены оба условия определения точной грани $\sup(0;1)=1$ ($\sup(0;1)\notin(0;1)$).

4 Найти точные грани множества всех правильных рациональных дробей $\frac{m}{n}$ и показать, что это множество не имеет наименьшего и наибольшего элементов.

$$P$$
 е m е n u е . Шаг I . Пусть $X = \left\{ \frac{m}{n} \middle| m, n \in \square, m < n \right\}$. Так как

 $\frac{m}{n}\!>\!0\;,\;\forall m,n\!\in\!\square\;$, то $\,0-$ нижняя грань множества $\,X$. Более того,

 $\forall \overline{x}>0$, так как, если $\overline{x}\geq 1$, то $a=\frac{1}{2}$ удовлетворяет условию $a<\overline{x}$. Если $0<\overline{x}<1$, то число \overline{x} можно записать в виде

бесконечной десятичной дроби: $\bar{x} = 0, x_1, x_2 \dots x_k \dots$, причем $\exists x_n : x_n \neq 0$.

Рациональное число $a=0,x_1,x_2,...,x_{n-1}\big(x_n-1\big)$ удовлетворяет условию $0 < a < \overline{x} < 1$, т.е. является правильной рациональной дробью и $0 < \overline{x}$. Следовательно, для числа 0 выполнено определение точной, нижней грани: $\inf X=0$. При этом $\inf X \not\in X$, так как $\frac{0}{n} \not\in X$, 0— не натуральное число и поэтому множество не имеет наименьшего элемента.

Шаг 2. Так как X содержит только правильные дроби, то $\frac{m}{n} < 1$, то число 1 — верхняя грань множества X . Более того,

 $\forall \overline{x} < 1 \quad \exists \ \frac{m}{n} \in X : \frac{m}{n} > \overline{x}$. Действительно, \exists рациональное число

 $x_1 = \frac{m}{n}: \overline{x} < x_1 < 1$. Значит, $x_1 \in X$ и для числа 1 выполнены оба условия определения точной верхней грани. Следовательно, $\sup X = 1$. Но $\sup X \notin X$, т.к. $\frac{m}{n} = 1$ при m = n, что противоречит определению правильной дроби. Поэтому множество X не имеет наибольшего элемента.

Тема 3 Множество комплексных чисел

1 Найти z_1+z_2 ; z_1-z_2 ; $z_1\cdot z_2$, z_1/z_2 для z_1 и z_2 :

a)
$$z_1 = 2 + 3i$$
; $z_2 = 3 - 5i$; B) $z_1 = 2 + i$; $z_2 = 1 - 2i$;

6)
$$z_1 = 5 - 2i$$
; $z_2 = 2 + 3i$; r) $z_1 = \frac{-1 + i}{-1 - i}$; $z_2 = 2i$.

2 Вычислить:

a)
$$\frac{1}{i}$$
; 6) $\frac{1-i}{1+i}$; B) $\frac{2}{1-3i}$; Γ) $\frac{-2-i}{1+2i}$.

3 Представить в тригонометрической и показательной формах и изобразить числа на плоскости \square комплексные числа:

a)
$$z = 3i$$
; Γ) $z = -3 - 3i$;

б)
$$z = -2$$
; д) $z = -1 + 2i$;

B)
$$z = 1 - i$$
; e) $z = 1$.

4 Изобразить на комплексной плоскости следующие множества:

a)
$$\{z \in \Box \mid \operatorname{Re} z = \operatorname{Im} z\}$$
;

$$\Gamma) \left\{ z \in \mathbb{C} \left| |z - 1 - i| \le 4 \right. \right\};$$

6)
$$\{z \in \Box \mid \operatorname{Re} z > 0\}$$
;

$$\pi$$
) $\left\{ z \in \square \mid \left| \frac{z-1}{z+1} \right| \le 1 \right\};$

B)
$$\left\{ z \in \Box \mid \arg z = \frac{\pi}{4} \right\};$$

e)
$$\{ z \in \square \mid 0 \le \operatorname{Im} z \le 1 \}$$
.

5 Вычислить:

а)
$$(1+i\sqrt{3})^3$$
; в) $(-1+i)^{10}$; д) $(\sqrt{2}+i\sqrt{2})^{25}$;

a)
$$(1+i\sqrt{3})^3$$
; B) $(-1+i)^{10}$; π) $(\sqrt{2}+i\sqrt{2})^{25}$;
6) $(1-i)^{100}$; Γ) $(\frac{1}{2}-i\frac{\sqrt{3}}{2})^{24}$; e) $(3+4i)^3$.

6 Найти все значения корня:

a)
$$\sqrt{\frac{1-i}{\sqrt{2}}}$$
;

б)
$$\sqrt[3]{-i}$$

B)
$$\sqrt[4]{16}$$
;

a)
$$\sqrt{\frac{1-i}{\sqrt{2}}}$$
; 6) $\sqrt[3]{-i}$; b) $\sqrt[4]{16}$; r) $\sqrt[3]{-1+i}$.

7 Решить уравнение:

$$(3x-i)(2+i)+(x-iy)(1+2i)=5+6i$$
.

8 Решить vравнение: $\overline{z} = z^2$.

Пример оформления решения

1 Даны два комплексных числа $z_1 = 1 - i$; $z_2 = -2 + 3i$. Найти

$$z_1 + z_2$$
; $z_1 - z_2$; $z_1 \cdot z_2$, $\frac{z_1}{z_2}$.

Решение. Используя правила суммы, разности, умножения и деления комплексных чисел в алгебраической форме, получим:

$$\begin{split} z_1 + z_2 &= (1-i) + (-2+3i) = (1-2) + i(3-1) = -1 + 2i \,, \\ z_1 - z_2 &= (1-i) - (-2+3i) = 1 - i + 2 - 3i = 3 - 4i \,, \\ z_1 \cdot z_2 &= (1-i) \cdot (-2+3i) = -2 + 2i + 3i - 3i^2 = \\ &= -2 + 2i + 3i + 3 = 1 + 5i \,, \\ \frac{z_1}{z_2} &= \frac{z_1 \cdot \overline{z}_2}{z_2 \cdot \overline{z}_2} = \frac{(1-i) \cdot (-2-3i)}{(-2+3i) \cdot (-2-3i)} = \frac{-2+2i-3i-3}{4+9} = \\ &= \frac{-5-i}{13} = -\frac{5}{13} - i\frac{1}{13} \,. \end{split}$$

2 Представить комплексные числа z = -1 + i, z = -4, z = i в тригонометрической и показательной формах.

Решение. При решении используем определения модуля и аргумента комплексного числа.

Для комплексного числа z=-1+i имеем $x=-1\;;\;y=1\;.$ Тогда модуль равен

$$r = |z| = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$
.

Так как

$$\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}, \ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$$

то аргумент Arg $z = \frac{3\pi}{4} + 2\pi k$, $k \in \square$.

Отсюда главное значение аргумента $\arg z = \varphi = \frac{3\pi}{4}$.

Следовательно, число z = -1 + i в тригонометрической форме запишется в виде

$$z = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right),$$

а в показательной — $z = \sqrt{2}e^{i\frac{\pi}{4}}$.

Аналогично для комплексного числа z = -4 имеем:

$$x = -4$$
; $y = 0 \implies r = 4$, arg $z = \varphi = \pi$; \Rightarrow

$$z = 4(\cos \pi + i \sin \pi) = 4e^{i\pi}.$$

Для комплексного числа z = i имеем x = 0; y = 1 и

$$r = 1$$
, arg $z = \varphi = \frac{\pi}{2} \implies z = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = e^{i\frac{\pi}{2}}$.

3 Вычислить
$$\left(-\sqrt{2} + i\sqrt{2}\right)^{10}$$

 $P\,e\,w\,e\,H\,u\,e$. Представим $\,z=-\sqrt{2}+i\sqrt{2}\,\,$ в тригонометрической форме. Так как $\,x=-\sqrt{2}\,\,;\,\,y=\sqrt{2}\,$, то

$$r = \sqrt{x^2 + y^2} = \sqrt{2 + 2} = \sqrt{4} = 2$$
,

$$\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-\sqrt{2}}{2}, \ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} = \frac{\sqrt{2}}{2} \implies \arg z = \varphi = \frac{3\pi}{4}.$$

Тогда
$$z = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right).$$

Подставляя в формулу $z^n = r^n(\cos n\varphi + i\sin n\varphi)$, получим:

$$\begin{split} z^{10} &= 2^{10} \left(\cos \frac{3 \cdot 10}{4} \pi + i \sin \frac{3 \cdot 10}{4} \pi \right) = 2^{10} \left(\cos \frac{15}{2} \pi + i \sin \frac{15}{2} \pi \right) = \\ &= 2^{10} \left(\cos \left(7\pi + \frac{\pi}{2} \right) + i \sin \left(7\pi + \frac{\pi}{2} \right) \right) = \\ &= 2^{10} \left(\cos \left(\pi + \frac{\pi}{2} \right) + i \sin \left(\pi + \frac{\pi}{2} \right) \right) = 2^{10} \left(0 - i \right) = -2^{10} i \; . \end{split}$$

4 Найти все значения корня $\sqrt[5]{1-i}$ и изобразить их в комплексной плоскости \square .

 $P e \, w \, e \, h \, u \, e$. Для комплексного числа $z = \sqrt[5]{1-i}$ имеем:

$$r = \sqrt{2}$$
; arg $z = -\frac{\pi}{4}$, $\Rightarrow z = \sqrt[10]{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$.

По формуле Муавра получим:

$$\sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos \frac{-\frac{\pi}{4} + 2\pi k}{5} + i \sin \frac{-\frac{\pi}{4} + 2\pi k}{5} \right) \quad k = 0,1,2,3,4.$$

При
$$k = 0$$
 имеем $z_0 = \sqrt[5]{1 - i} = \sqrt[10]{2} \left(\cos \frac{\pi}{20} - i \sin \frac{\pi}{20} \right)$,

при
$$k = 1$$
 имеем $z_1 = \sqrt[5]{1 - i} = \sqrt[10]{2} \left(\cos \frac{7\pi}{20} + i \sin \frac{7\pi}{20} \right)$,

при
$$k=2$$
 имеем $z_2 = \sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$,

при
$$k = 3$$
 имеем $z_3 = \sqrt[5]{1 - i} = \sqrt[10]{2} \left(\cos \frac{23\pi}{20} + i \sin \frac{23\pi}{20} \right)$

при
$$k=4$$
 имеем $z_4=\sqrt[5]{1-i}=\sqrt[10]{2}\left(\cos\frac{31\pi}{20}+i\sin\frac{31\pi}{20}\right).$

Точки z_0 , z_1 , z_2 , z_3 , z_4 являются вершинами правильного пятиугольника, вписанного в окружность радиусом $\sqrt[10]{2} \approx 1,072$ с центром в начале координат (рисунок 1. 1). Полярный угол точки

 z_0 равен $arphi_0 = -\pi/20$, а полярные углы остальных точек получаются последовательным прибавлением угла $2\pi/5$ к $arphi_0$, т.е. $arphi_k = arphi_0 + \frac{2\pi k}{5}$ при k=1,2,3,4.

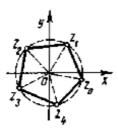


Рисунок 1. 1 — Корни комплексного числа $\sqrt[5]{1-i}$

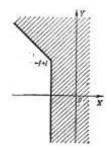


Рисунок 1. 2 – Множество G

5 Изобразить на плоскости □ множество

$$G = \left\{ z \in \Box \mid -\frac{\pi}{2} \le \arg(z+1-i) \le \frac{3\pi}{4} \right\}.$$

 $P\,e\,w\,e\,u\,u\,e$. Комплексное число $z_1=z+1-i=z-\left(-1+i\right)$ изображается вектором, началом которого является точка -1+i , а концом — точка z . Угол между этим вектором и осью Ox есть arg(z+1-i), и он меняется в пределах от $-\frac{\pi}{2}$ до $\frac{3\pi}{4}$. Следовательно, данное неравенство определяет угол между прямыми, выходящими из точки -1+i и образующими с осью Ox углы в $-\frac{\pi}{2}$ и $\frac{3\pi}{4}$. Данное множество G изображено на рисунке 1. 2.

Раздел 2 Теория пределов

Тема 1 Числовые последовательности

1 Напишите пять первых членов каждой из следующих последовательностей:

а)
$$x_n = \frac{1}{2n+1}$$
; г) $a_1 = 1$, $a_n = a_{n-1} + 2$, при $n > 1$;

б)
$$x_n = \frac{n+2}{n^3+1};$$
 д) $a_1 = 1, \ a_n = \frac{a_{n-1}}{2}, \text{ при } n > 1;$

B)
$$x_n = \frac{n}{2^{n+1}}$$
; e) $x_n = (-1)^n \frac{1}{n}$.

Какие из данных последовательностей являются ограниченными сверху, ограниченными снизу, ограниченными, монотонными?

- **2** Найти формулу для общего члена следующих последовательностей:
- а) члены с четными номерами равны 1, а члены с нечетными равны -1;
- б) членами последовательности являются корни уравнения $\cos \pi x = 0$.
 - 3 Может ли быть монотонной последовательностью:
 - а) сумма двух немонотонных последовательностей;
 - б) произведение двух немонотонных последовательностей?
 - 4 Доказать по определению, что последовательности

a)
$$x_n = \frac{n}{n^2 + 1}$$
, 6) $x_n = \frac{\sin n}{n}$, B) $x_n = 2^{-n}$.

являются бесконечно малыми.

5 Доказать по определению, что последовательности

a)
$$x_n = \ln(n+1)$$
, б) $x_n = 2^{2n+1}$, в) $x_n = (-1)^n n$.

Пример оформления решения

1 Напишите пять первых членов из следующих последовательностей:

a)
$$x_n = (-1)^{n-1} \frac{n+1}{n^2}$$
;

б) числа Фибоначчи $x_1 = 1$, $x_2 = 1$, $x_{n+1} = x_n + x_{n-1}$;

в)
$$y_n = \begin{cases} -n, \text{ если } n - \text{простое число}, \\ -n^2, \text{ если } n - \text{составное число}. \end{cases}$$

Какие из данных последовательностей являются ограниченными сверху, ограниченными снизу, ограниченными, монотонными?

 $P \, e \, w \, e \, h \, u \, e$. a) для последовательности $x_n = (-1)^{n-1} \frac{n+1}{n^2}$

имеем
$$x_1 = 2$$
, $x_2 = -\frac{3}{4}$, $x_3 = \frac{4}{9}$, $x_4 = -\frac{5}{16}$, $x_5 = \frac{6}{25}$.

Поскольку $\left|x_n\right| = \left|\left(-1\right)^{n-1}\frac{n+1}{n^2}\right| = \frac{n+1}{n^2} \le 2$ для любого $n \in \square$, то

последовательность является ограниченной.

Так как $x_3 > x_4$ и $x_4 < x_5$, видно, что определение монотонности не выполняется. Значит, последовательность $x_n = \left(-1\right)^{n-1} \frac{n+1}{n^2}$ не является монотонной.

б) для чисел Фибоначчи имеем: $x_1=1$, $x_2=1$, $x_3=x_2+x_1=2$, $x_4=x_3+x_2=3$, $x_5=x_4+x_3=5$.

Поскольку $x_n \ge 1 \quad \forall n \in \square$, то последовательность ограничена снизу, но неограничена сверху. При этом $x_n \le x_{n+1} \quad \forall n \in \square$. Значит, числа Фибоначчи образуют неубывающую последовательность.

в) для последовательности $\left(y_n\right)$ получим: $y_1=-1$, $y_2=-2$, $y_3=-3$, $y_4=-16$, $y_5=-5$.

Данная последовательность ограничена сверху числом -1, но неограничена снизу. Она не является монотонной, так как $y_4 < y_3$ и $y_4 < y_5$.

2 Доказать по определению, что последовательность $\left(\frac{1}{2n}\right) = \left(\frac{1}{2}; \frac{1}{4}; \frac{1}{6}; \dots\right)$ является бесконечно малой последовательностью.

 $P\,e\,w\,e\,h\,u\,e$. Возьмем произвольное малое число $\,arepsilon>0$. Так как $\left|rac{1}{2n}
ight|<arepsilon$, то для нахождения значений $\,n\,,\,$ удовлетворяющих этому

неравенству, достаточно его решить. Поскольку $n \in \square$, то $\frac{1}{2n} < \varepsilon$.

Решая данное неравенство, получим $n > \frac{1}{2\varepsilon}$. Следовательно, в

качестве $N(\varepsilon)$ можно взять целую часть числа $\frac{1}{2n}$: $N(\varepsilon) = \left[\frac{1}{2\varepsilon}\right]$.

Тогда неравенство $\left|\frac{1}{2n}\right| < \varepsilon$ будет выполнятся при всех номеров n , больших чем $N(\varepsilon)$.

Например, пусть $\varepsilon = 0.1$. Тогда $N(\varepsilon) = \frac{1}{2 \cdot 0.1} = 5$.

Начиная с шестого номера все члены последовательности $\left(\frac{1}{2n}\right)$ меньше $\varepsilon=0,1$.

3 Доказать по определению, что последовательность $(n^2) = (1;4;9;...)$ является бесконечно большой.

 $P\,e\, w\,e\, u\, u\, e$. Возьмем произвольное число c>0 . Из неравенства $|x_n|>c$ найдем N(c) :

$$n^2 > c \implies n > \sqrt{c}$$
.

Возьмем за N(k) целую часть числа $\sqrt{c}: N(k) = 1 + \left[\sqrt{c}\right]$. Тогда для всех номеров n, больших чем N(c), выполняется неравенство $n^2 > c$.

В частности, для c=0,16 имеем $N(c)=1+\left[\sqrt{0,16}\right]=1$. Значит, для всех членов последовательности, начиная со второго номера, выполняется неравенство $n^2>c$. Если c=12, то $N(c)=1+\left[\sqrt{12}\right]=4$ и неравенство верно $\forall n>4$.

4 Является ли неограниченная последовательность бесконечно большой?

Решение. Рассмотрим последовательность

$$(x_n) = (1,0,2,0,3,0,4,0,...).$$

Данная последовательность является неограниченной, поскольку для любого $A \in \square$ найдется элемент последовательности (x_n) , для которого $x_n > A$. Однако она не является бесконечно большой, так как это неравенство не выполняется для любого $n \in \square$. Поэтому не всякая неограниченная последовательность является бесконечно большой.

Тема 2 Предел последовательности

1 Докажите, что $\lim_{n\to\infty} x_n=1$, указав для каждого положительного числа ε такой номер $N(\varepsilon)$, что при всех $n\ge N(\varepsilon)$ элементы x_n последовательности удовлетворяют неравенству $|x_n-1|<\varepsilon$, если x_n равно:

a)
$$\frac{2n+1}{n}-1$$
; B) $1+\frac{(-1)^n}{n}$;

6)
$$1 + \frac{\sin\frac{\pi n}{2}}{n}$$
; Γ) $\frac{n}{\sqrt{n^2 + n}}$.

2 Пользуясь определением предела последовательности, докажите, что:

a)
$$\lim_{n \to \infty} (0.8)^n = 0$$
; 6) $\lim_{n \to \infty} \frac{2^n + 5 \cdot 6^n}{3^n + 6^n} = 5$.

3 Докажите, что последовательность $x_n = n^{(-1)^n}$ расходится.

4 Докажите, что число a=-1 не является пределом последовательности $x_n=\cos\pi n$.

5 Докажите по определению, что последовательность $x_n = 2^{\sqrt{n}}$ имеет бесконечный предел при $n \to \infty$.

6 Вычислить пределы:

a)
$$\lim_{n\to\infty}\frac{6n-1}{2n+3}$$
;

$$\text{u)} \lim_{n \to \infty} \frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + n}$$

6)
$$\lim_{n\to\infty}\frac{10n}{n^2+1};$$

$$\kappa$$
) $\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$;

B)
$$\lim_{n\to\infty} \frac{3n+2}{5n^2+4n-1}$$
;

$$\pi) \lim_{n\to\infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n}\right);$$

$$\Gamma$$
) $\lim_{n\to\infty}\frac{n^2-n}{n-\sqrt{n}}$;

M)
$$\lim_{n\to\infty} \left(\frac{2n+3}{2n-5}\right)^{3n+1}$$
;

H)
$$\lim_{n\to\infty} \left(\frac{2n+3}{n-5}\right)^{3n+1}$$
;

e)
$$\lim_{n\to\infty} \left(\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \dots \cdot \sqrt[2n]{2}\right);$$

o)
$$\lim_{n\to\infty} \sqrt[n]{n^2}$$
;

ж)
$$\lim_{n \to \infty} \left(\frac{n+3}{2n-5} \right)^{3n+1}$$
; Π $\lim_{n \to \infty} \sqrt[n]{2+\frac{1}{n}}$.

Примеры оформления решения

1 Доказать по определению, что $\lim_{n\to\infty} \frac{n}{n+1} = 1$.

P е u е u e . Возьмем любое $\varepsilon > 0$. Найдем номер $N(\varepsilon)$.

Из неравенства $\left|\frac{n}{n+1}-1\right|<\varepsilon$ получим $\frac{1}{n+1}<\varepsilon$. Отсюда $n>\frac{1}{s}-1$.

Если взять $N(\varepsilon) = \left[\frac{1}{\varepsilon} - 1\right] + 1$ (так как при $\varepsilon \ge 1$ получим $\left[\frac{1}{\varepsilon} - 1\right] = 0 \not\in \square$), то для всех номеров $n > N(\varepsilon)$ выполняется неравенство $\left|\frac{n}{n+1} - 1\right| < \varepsilon$.

Например, при $\varepsilon=0.01$ последнее неравенство справедливо для членов последовательности с номерами 100, 101, ..., а при $\varepsilon=2$ неравенство верно \forall $n\in\square$.

2 Доказать, что ограниченная последовательность $x_n = (-1)^n$ не имеет предела.

Pewehue. Предположим, что она имеет предел, равный $a \in \square$. Тогда

$$\lim_{n\to\infty} (-1)^n = a \iff \forall \ \varepsilon = \frac{1}{2} \ \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \ \left| (-1)^n - a \right| < \frac{1}{2}.$$

При n = 2k получим $|1 - a| < \frac{1}{2}$, при n = 2k - 1 получим

$$\left|-1-a\right| < \frac{1}{2}$$
 или $\left|1+a\right| < \frac{1}{2}$.

С учетом этого $\forall n \geq N(\varepsilon)$

$$2 = |1 - a + a + 1| \le |1 - a| + |1 + a| < \frac{1}{2} + \frac{1}{2} = 1,$$

т. е. 2 < 1. Получили противоречие.

Значит, последовательность $x_n = (-1)^n$ не имеет предела.

3 Доказать, что последовательность $x_n = \frac{(-1)^n}{2n}$ сходится к нулю, но она не является монотонной.

Решение.

$$\lim_{n\to\infty}\frac{\left(-1\right)^n}{2n}=0 \iff \forall \, \varepsilon>0 \, \exists N\left(\varepsilon\right)\colon \forall n\geq N\left(\varepsilon\right) \quad \left|\frac{\left(-1\right)^n}{2n}-0\right|<\varepsilon \; .$$

Найдем номер $N(\varepsilon)$, начиная с которого выполняется это неравенство:

$$\left| \frac{\left(-1\right)^n}{2n} \right| < \varepsilon \iff \frac{1}{2n} < \varepsilon \iff n > \frac{1}{2\varepsilon} \iff N(\varepsilon) = \left[\frac{1}{2\varepsilon} \right] + 1.$$

Следовательно, последовательность сходится.

Так как $x_1 = -\frac{1}{2}$, $x_2 = \frac{1}{4}$, $x_3 = -\frac{1}{6}$, ..., то последовательность не является монотонной.

4 Доказать, что
$$\lim_{n\to\infty}\frac{2^n}{n!}=0$$
.

Pe ue н ue. Покажем, что $x_n = \frac{2^n}{n!}$ монотонна.

Рассмотрим
$$x_{n+1} = \frac{2^{n+1}}{(n+1)!} = \frac{2}{n+1} \cdot \frac{2^n}{n!} = \frac{2}{n+1} \cdot x_n$$
.

Следовательно, $x_{n+1} < x_n \quad \forall n > 2$, т. е. x_n – убывающая и ограничена снизу числом 0. По свойству сходимости монотонной ограниченой последовательности существует предел

последовательности
$$x_n = \frac{2^n}{n!}$$
, равный b , т.е. $\lim_{n \to \infty} x_n = b$.

Переходя к пределу в равенстве $x_{n+1} = \frac{2}{n+1} \cdot x_n$ при $n \to \infty$, получим $b = b \cdot 0$. Отсюда b = 0.

5 Доказать, что
$$x_n = \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)...\left(1 + \frac{1}{2^n}\right)$$
 — сходится.

Решение. Так как

$$\frac{x_{n+1}}{x_n} = 1 + \frac{1}{2^{n+1}} > 1,$$

то x_n – возрастает.

Покажем, что последовательность ограничена. Имеем:

$$\ln x_n = \ln \left(1 + \frac{1}{2} \right) + \ln \left(1 + \frac{1}{4} \right) + \dots + \ln \left(1 + \frac{1}{2^n} \right) <$$

$$< \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} < \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = 1,$$

т .e. $\ln x_n < 1$. Откуда $x_n < e$.

Значит, x_n — монотонна и ограничена. Тогда по свойству о сходимости монотонной и ограниченной последовательности x_n сходится.

6 Вычислить пределы:

a)
$$\lim_{n\to\infty} \frac{8n-5}{2n+3}$$
, 6) $\lim_{n\to\infty} \left(\sqrt{n^2+n} - \sqrt{n+1}\right)$, B) $\lim_{n\to\infty} \left(\frac{n-1}{n+3}\right)^n$.

Решение. a) имеем:

$$\lim_{n \to \infty} \frac{8n-5}{2n+3} = \left[\begin{array}{c} \text{разделим числитель} \\ \text{и знаменатель на } n \end{array} \right] = \lim_{n \to \infty} \frac{8-\frac{5}{n}}{2+\frac{3}{n}} =$$

$$= \text{ по свойствам пределов } = \frac{\lim\limits_{n\to\infty}\left(8-\frac{5}{n}\right)}{\lim\limits_{n\to\infty}\left(2+\frac{3}{n}\right)} = \frac{5}{n}$$

$$= \text{ по свойствам пределов } = \frac{\lim_{n \to \infty} 8 - \lim_{n \to \infty} \frac{5}{n}}{\lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{1}{n}} = \frac{8 - 0}{2 + 0} = \frac{8}{2} = 4 \; .$$

б) имеем:

$$\lim_{n\to\infty} \left(\sqrt{n^2 + n} - \sqrt{n^2 + 1} \right) = (\infty - \infty) =$$

$$= \lim_{\text{на } \sqrt{n^2 + n} + \sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{n\left(1 - \frac{1}{n}\right)}{n\left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{1}{n^2}}\right)} = \frac{1}{2}.$$

в) имеем:

$$\lim_{n \to \infty} \left(\frac{n-1}{n+3} \right)^n = \left(1^{\infty} \right) = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^n = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^n} = \lim_{n \to \infty} \left(1 + \frac{-4}{n+3} \right)^{\frac{n+3}{-4} \cdot \left(\frac{-4}{n+3} \right)^{\frac{n+3}{$$

7 Доказать, что последовательность $x_n = a_0 + a_1 q + \ldots + a_n q^n$, где $|a_k| < M \quad \forall k = \overline{1,n} \;,\; |q| < 1 \;,$ сходится.

 $P\,e\, m\,e\, n\, u\, e$. Для доказательства используется критерий Коши.

Возьмем любое $\varepsilon > 0$ и рассмотрим разность

$$\begin{split} & \left| x_n - x_{n+p} \right| = \left| a_{n+p} q^{n+p} + a_{n+p-1} q^{n+p-1} + \ldots + a_{n+1} q^{n+1} \right| \leq \\ & \leq M \left| q^{n+p} \right| + \ldots + M \left| q^{n+1} \right| \leq M p \left| q^{n+1} \right| \to 0 \ \text{при } n \to \infty \,. \end{split}$$

Следовательно, существует $N(\varepsilon) = \left[\frac{\varepsilon}{M}\right] + 1$, такое, что $\forall n < \square$

и $\forall p>0$ выполняется неравенство $\left|x_n-x_{n+p}\right|<\varepsilon$. Следовательно, последовательность $\left(x_n\right)$ является фундаментальной и согласно критерию Коши она сходится.

8 Доказать, что
$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 расходится.

Решение. Построим отрицание к критерию Коши:

$$\exists \varepsilon_0 > 0 \ \forall N \ \exists n \ge N \ \exists p \ge N : \left| x_{n+p} - x_n \right| \ge \varepsilon_0.$$

Для этого рассмотрим разность

$$\left| x_{n+p} - x_n \right| = \left| \frac{1}{n+p} + \frac{1}{n+p-1} + \dots + \frac{1}{n+1} \right| \ge p \cdot \frac{1}{n+p}$$
.

Пусть p=n . Тогда получим $\left|x_{2n}-x_{n}\right|\geq\frac{1}{2}$.

Значит, $\exists \varepsilon_0 = \frac{1}{2}$, такое, что $\forall N \ \exists n = p \ge N$, $\left| x_{2n} - x_n \right| \ge \varepsilon_0$, т.е. последовательность не является фундаментальной, а значит и не

сходится.

9 Доказать, что последовательность $x_n = \sin n$ расходится.

Решение. Доказательство проведем от противного.

существует конечный предел $\lim_{n\to\infty}\sin n=a\;,$

следовательно, $\lim_{n \to \infty} \sin(n+2) = a$. Тогда

$$\lim_{n\to\infty} (\sin(n+2) - \sin n) = 0.$$

С другой стороны

$$\sin(n+2) = 2\sin 1 \cdot \cos(n+1),$$

$$\lim_{n \to \infty} (2\sin 1 \cdot \cos(n+1) - \sin n) = 0.$$

Следовательно, $\lim_{n\to\infty}\cos(n+1)=0$.

С учетом того, что $\cos(n+1) = \cos n \cos 1 - \sin n \sin 1$, имеем

$$\sin n = \frac{1}{\sin 1} (\cos n \cos 1 - \cos(n+1)).$$

Значит.

$$\lim_{n\to\infty} \sin n = \frac{1}{\sin 1} \lim_{n\to\infty} (\cos n \cos 1 - \cos(n+1)) = 0.$$

Таким образом, $\lim_{n\to\infty} \sin n = \lim_{n\to\infty} \cos n = 0$, что противоречит равенству $\cos^2 n + \sin^2 n = 1$.

Следовательно, $\sin n$ расходится.

Тема 3 Предел функции

1 Найти область определения следующих функций:

a)
$$y = \frac{\ln(x+1)}{x-2}$$
; 6) $y = \arccos\left(\frac{x}{2} - 1\right)$; B) $y = \sqrt[4]{\frac{x-1}{x^2-9}} - \sqrt{\sin x}$.

2 Исследовать на ограниченность следующие функции:

a)
$$y = \frac{3}{x-2}$$
 на (1;3), 6) $y = \frac{\cos x}{x^2+1}$ на \square .

3 Определить, какая из данных функций четная, нечетная:

a)
$$y = |x| - 5 \ln(x^2 + 1);$$

6)
$$y = x^3 + 3\sin x$$
;

B)
$$y = \log_2(x + \sqrt{x^2 + 1})$$
.

4 Найти период следующих функций:

a)
$$y = \cos^3 x \sin x - \sin^3 x \cos x$$
,

$$6) y = \sin|x|.$$

5 Используя определение предела функции по Коши, доказать, что:

a)
$$\lim_{x \to 2} 3x = 6$$
;

a)
$$\lim_{x \to 2} 3x = 6$$
;
b) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$;
6) $\lim_{x \to 1} (2x - 4) = -2$;
r) $\lim_{x \to +\infty} (2x - 4) = +\infty$.

6)
$$\lim_{x \to 1} (2x-4) = -2$$
;

$$\Gamma) \lim_{x \to +\infty} (2x - 4) = +\infty.$$

6 Доказать, что функция $y(x) = \sin x$ не имеет предела при $x \to +\infty$.

7 Доказать, что число 1 не является пределом функции f(x)при $x \to 0$, если $f(x) = \sin x$.

8 Привести пример функции, удовлетворяющей условию:

a)
$$\lim_{x\to 2} f(x) = 3$$
,

б)
$$f(x)$$
 не имеет предела в точке $x = 2$.

9 Привести пример функций f(x) и q(x), каждая из которых не имеет предела в точке x = 0, но их сумма, произведение, разность; частное имеет предел в точке x = 0.

10 Известно, что $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} q(x) = B$. Найти:

a)
$$\lim_{x\to x_0} f^n(x)$$
, $n\in \square$;

B)
$$\lim_{x \to x_0} (f(x) + 1)(q(x) - 2);$$

6)
$$\lim_{x \to x_0} \frac{f^2(x) - q(x)}{q^2(x) + 1}$$
;

$$\Gamma) \lim_{x \to x_0} \sqrt{f^2(x)} .$$

11. Вычислить пределы:

a)
$$\lim_{x \to 1} \left(2x^2 + \frac{1}{x} + 3x - 2 \right);$$

$$\exists \lim_{x\to 2} \frac{x^2-4}{x-2};$$

6)
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x}-\sqrt{2}}$$
;

e)
$$\lim_{x\to 1} \frac{x^3 + 2x^2 - x - 2}{x^2 - 3x + 2}$$
;

B)
$$\lim_{x\to 1} \frac{\sqrt[3]{x^2+6x+1}}{x^2-3x+1}$$
;

ж)
$$\lim_{x\to 2} \lg(4x-1+\sqrt{2x+5});$$

$$\Gamma) \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}}; \qquad 3) \lim_{x \to \infty} \left(\frac{x + 4}{2x - 7}\right)^{x}.$$

12 Для функции $f(x) = \frac{x^2 - 4}{(x+2)(x+1)}$ найти:

a)
$$\lim_{x\to -2} f(x)$$
;

Примеры оформления решения

1 Найти область определения D и множество значений E функции $y = \frac{1}{\sqrt{A-x^2}}$.

 $Pe\, w\, e\, u\, u\, e$. Функция $y=rac{1}{\sqrt{4-x^2}}$ определена, если $4-x^2>0$,

т.е. если |x| < 2 . Поэтому областью определения функции является множество

$$D(f) = \left\{ x \in \Box \mid |x| < 2 \right\} = (-2; 2).$$

Поскольку $\frac{1}{\sqrt{4-x^2}} \ge \frac{1}{2}$ для всех x из области определения, то

 $E(f) = \left\{ y \middle| y \ge \frac{1}{2} \right\} = \left[\frac{1}{2}; +\infty \right].$

2 Доказать, что функция $f(x) = \frac{1}{x}$ является неограниченной сверху на множестве (0;1).

Решение. По определению:

множество значений есть

$$f(x)$$
 ограничена сверху на $(0;1) \Leftrightarrow$

$$\exists M \in \square : \forall x \in (0,1) \Rightarrow f(x) \leq M$$
.

Построим отрицание для этого определения:

f(x) неограничена сверху на $(0;1) \Leftrightarrow$

$$\forall M \in \square : \exists x \in (0;1) \Rightarrow f(x) > M.$$

Bозьмем
$$x = \frac{1}{1+|M|}$$
.

Тогда
$$f\left(\frac{1}{1+\left|M\right|}\right) = 1+\left|M\right| > M$$
 для любого M .

Следовательно, существует такое число $x \in (0;1)$, что f(x) > M . Поэтому функция неограничена.

3 Определить, какая из данных функций четная, нечетная

a)
$$f(x) = x^2 \cdot \sqrt[3]{x} + 2\sin x$$
, 6) $f(x) = x^2 + 5x$, B) $f(x) = 2^x + 2^{-x}$?
 $Pewehue$.

а) изменим знак аргумента, тогда получим:

$$f(-x) = (-x)^2 \cdot \sqrt[3]{-x} + 2\sin(-x) = -x^2 \cdot \sqrt[3]{x} - 2\sin x = -f(x)$$

Следовательно, функция нечетная.

- б) здесь $f(-x) = (-x)^2 + 5(-x) = x^2 5x$. Таким образом, эта функция общего вида.
 - в) имеем

$$f(-x) = 2^{-x} + 2^{-(-x)} = 2^{-x} + 2^{x} = f(x).$$

4 Найти период функции $y = \cos 3x + \cos 4x$.

Pemenue. Функция $\cos 3x$ имеет период $T_1 = \frac{2\pi}{3}$, а функция

 $\cos 4x$ — период $T_2=\frac{2\pi}{4}$. Поскольку $3T_1=4T_2=2\pi$, то число 2π является периодом данной функции.

5 Показать, что функция y = 3x + 2 имеет обратную, и найти ее аналитическое выражение.

 $P \, e \, u \, e \, h \, u \, e$. Функция $y = 3x + 2 \ \forall x \in \Box$ монотонно возрастает. Следовательно, имеет обратную.

Решив уравнение y=3x+2 относительно x, получим $x=f^{-1}(y)=\frac{y-2}{3}$.Поменяв местами обозначения, найдем обратную функцию $y=f^{-1}(x)=\frac{x-2}{3}$.

Графики этих функций изображены на рисунке 2. 1.

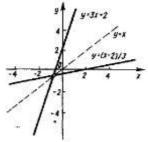


Рисунок 2. 1. – Графики функции y = 3x + 2 и обратной ей $y = f^{-1}(x) = \frac{x - 2}{3}$

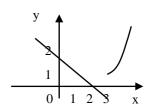


Рисунок 2. 2 – График функции $y = \begin{cases} 2 - x, & \text{если } x < 3, \\ 0.1x^2, & \text{если } x \ge 3. \end{cases}$

6 Построить график функции
$$y = \begin{cases} 2-x, & \text{если } x < 3, \\ 0.1x^2, & \text{если } x \ge 3. \end{cases}$$

 $P\,e\,w\,e\,h\,u\,e$. При $\,x<3\,$ функция представляется лучом прямой $\,y=2-x\,$, при $\,x\geq 3\,$ — параболой $\,y=0,1x^2\,$. График данной функции представлен на рисунке $\,2.\,$ 2.

7 Используя определение предела функции по Гейне, доказать, что $\lim_{r\to 1}\frac{x^2-1}{r-1}=2$.

$$P\,e\,w\,e\,h\,u\,e$$
 . Функция $f(x) = \frac{x^2-1}{x-1}$ (рисунок 2. 3) не определена в точке $x_0=1$, но определена для любой $\overset{\circ}{U}(\mathcal{S};x_0)$. Пусть (x_n) — произвольная последовательность с общим членом $x_n \neq 1$ $\forall n \in \square$, такая, что $\lim_{n \to \infty} x_n = 1$. Образуем последовательность $f(x_n) = \frac{x_n^2-1}{x_n-1}$ $\forall n \in \square$. Так как $x_n \neq 1$, то $f(x_n) = x_n + 1$ $\forall n \in \square$. Поэтому $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (x_n + 1) = 2$.

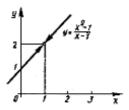


Рисунок 2. 3 – График функции $f(x) = \frac{x^2 - 1}{x - 1}$.

Следовательно, $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$.

8 Доказать, что функция $y(x) = \cos x$ не имеет предела при $x \to +\infty$.

Peuehue. Докажем, что эта функция не удовлетворяет определению предела функции при $x \to +\infty$ по Γ ейне:

$$\lim_{\substack{x \to +\infty \\ n \to \infty}} f(x) = A \iff \forall (x_n), \ x_n > 0, \ x_n \in \overset{\circ}{U}(\delta; x_0) \colon \lim_{\substack{n \to \infty \\ n \to \infty}} x_n = +\infty$$

Для этого укажем такую бесконечно большую последовательность (x_n) , что последовательность $(\cos x_n)$ расходится. Положим $x_n = \pi n$, $n \in \square$. Тогда $\lim_{n \to \infty} x_n = +\infty$ и последовательность $\cos x_n = (1,-1,1,-1,\ldots)$ расходится. Следовательно, функция $\cos x$ не имеет предела при $x \to +\infty$.

 ${\bf 9}$ Используя определение предела по Коши, доказать, $\lim_{x\to 0}\sin x=0$.

 $P\,e\,w\,e\,h\,u\,e$. Возьмем произвольное малое $\varepsilon>0$. Положим $\delta=\varepsilon$. Известно, что $\forall x\in \overset{\circ}{U}(\delta;0)$ выполняется неравенство $\left|\sin x\right|\leq \left|x\right|<\delta=\varepsilon$. Это означает, что $\lim_{x\to 0}\sin x=0$.

10 Докажите, что для функции

$$f(x) = \begin{cases} 1, \text{ если } x \ge 0, \\ 0, \text{ если } x < 0 \end{cases}$$

число 1 не является пределом при $x \to 0$.

Pewehue. Положим $\varepsilon_0 = \frac{1}{2}$. Тогда $\forall \delta > 0$ существуют $x \ge 0$ и x < 0 такие, что $0 < |x - x_0| < \delta$. Для x < 0 имеем

$$|f(x)-1|=|0-1|=1>\frac{1}{2}$$
.

Значит,

$$\exists \ \varepsilon_0 = \frac{1}{2} > 0 \ \forall \delta > 0 \ \exists x \ 0 < |x - x_0| < \delta : \ |f(x) - 1| \ge \varepsilon_0.$$

Поэтому $\lim_{x \to x_0} f(x) \neq 1$.

Тема 4 Бесконечно малые функции

1 Доказать, что функция $\alpha(x)$ при $x \to a$ является бесконечно малой:

a)
$$\alpha(x) = \sin(x-2)$$
 при $x \to 2$;

б)
$$\alpha(x) = x^2 - 3x + 2$$
 при $x \to 1$;

в)
$$\alpha(x) = x^2 \sin\left(\frac{1}{x}\right)$$
 при $x \to 0$.

2 С помощью принципа замены эквивалентных функций вычислить следующие пределы:

a)
$$\lim_{x\to 0} \frac{\sin 3x}{\ln(1+2x)};$$

$$\lim_{x \to 0} \frac{\sin 3x}{\ln(1+2x)}; \qquad \qquad \text{д) } \lim_{x \to 0} \frac{\ln(1+2x)}{\sqrt[4]{x^4 - 7x^8}};$$

6)
$$\lim_{x \to 0} \frac{\lg^2 2x}{x^2}$$
;

e)
$$\lim_{x \to 0} \frac{\cos 6x - \cos 4x}{\arcsin^2 3x}$$
;

B)
$$\lim_{x\to 0} \frac{\sin x + x^3 - 2x^5}{5x + 3x^3 + x^4}$$
;

ж)
$$\lim_{x\to 0} \frac{e^{2x}-1}{\sqrt[4]{16x^4+x^8}}$$
;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sqrt[5]{1+\sin 2x}-1}{\sin 3x}$;

и)
$$\lim_{x\to 0} \frac{e^{3x} - e^{-2x}}{2\sin^2 x - \operatorname{arctg} 2x}$$
.

3 Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
;

ж)
$$\lim_{x\to 0} \frac{\operatorname{arctg} x}{x}$$
;

$$6) \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}};$$

$$\mathrm{u)} \lim_{x \to 1} \frac{\sin \pi x^2}{\sin \pi x^3};$$

$$B) \lim_{x\to\infty} \left(\frac{x}{x+3}\right)^{x+2};$$

$$\kappa) \lim_{x\to\infty} \left(\frac{x-4}{x+3}\right)^{\frac{x}{2}};$$

$$\Gamma$$
) $\lim_{t\to 0} \frac{\sqrt[3]{1+4t}-1}{t}$;

$$\pi$$
) $\lim_{t\to 0} \frac{2t}{e^{3t}-1}$;

$$\pi$$
 $\lim_{x\to 0} \frac{\sqrt[4]{1+\sin x}-1}{x}$;

$$\mathrm{M}) \lim_{x\to 0} \frac{\ln\cos^2 x}{r^2};$$

e)
$$\lim_{x\to 5} \frac{\sin(x-5)}{x^2-6x+5}$$
;

H)
$$\lim_{x\to 2} \left(\frac{1}{(x-2)^2} - \frac{2x^2}{x^2-4} \right)$$
.

Примеры оформления решения 1 Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 3x}$$
;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\operatorname{tg} bx}{x}$

$$\Gamma \lim_{x \to 0} \frac{\operatorname{tg} bx}{x}; \qquad \text{w) } \lim_{x \to 0} (1 + 2x)^{\frac{1}{x}};$$

6)
$$\lim_{y \to 0} \frac{\sqrt{1+2y-1}}{y};$$
 $\mu = \frac{\ln(1+3y)}{y};$ $\mu = \lim_{y \to 0} \frac{e^{\frac{y}{2}}-1}{y};$

$$\lim_{y\to 0}\frac{e^{\frac{y}{2}}-1}{y}$$

B)
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2}$$

B)
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2}$$
; e) $\lim_{x\to 5} \frac{\sin(x-5)}{x^2 - 6x + 5}$.

Решение.

а) имеем:

$$\lim_{x \to 0} \frac{\sin 5x}{\sin 3x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot \frac{3x}{\sin 3x} \cdot \frac{5}{3} =$$

$$= \frac{5}{3} \cdot \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot \lim_{x \to 0} \frac{3x}{\sin 3x} = \frac{5}{3} \cdot \frac{\lim_{x \to 0} \frac{\sin 5x}{5x}}{\lim_{x \to 0} \frac{\sin 3x}{5x}} = \frac{5}{3}.$$

б) имеем:

$$\lim_{y \to 0} \frac{\sqrt{1+2y} - 1}{y} = \left(\frac{0}{0}\right) = \lim_{y \to 0} 2 \cdot \frac{\left(1+2y\right)^{\frac{1}{2}} - 1}{2y} = 2y = x = 0$$

$$=2\lim_{x\to 0}\frac{(1+x)^{\frac{1}{2}}-1}{x}=2\cdot\frac{1}{2}=1.$$

в) имеем:

$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{e^{x^2} - 1 + 1 - \cos x}{x^2} = \frac{1}{2}$$

$$= \lim_{x \to 0} \frac{e^{x^2} - 1}{x^2} + \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{t \to 0} \frac{e^t - 1}{t} + \lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{x^2} = \lim_{x$$

$$=1+\lim_{x\to 0}\frac{\sin^2\frac{x}{2}}{4\cdot\left(\frac{x}{2}\right)^2}=1+\frac{1}{4}\cdot\lim_{t\to 0}\frac{\sin^2t}{t^2}=1+\frac{1}{4}=\frac{5}{4}.$$

г) имеем:

$$\lim_{x \to 0} \frac{\operatorname{tg} bx}{x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{1}{x} \cdot \frac{\sin bx}{\cos bx} = \lim_{x \to 0} \frac{\sin bx}{bx} \cdot \lim_{x \to 0} \frac{b}{\cos bx} = 1 \cdot b = b.$$

д) имеем:

$$\lim_{y \to 0} \frac{\ln(1+3y)}{y} = \left(\frac{0}{0}\right) = \lim_{y \to 0} 3 \cdot \frac{\ln(1+3y)}{3y} = 3y = x = 3\lim_{x \to 0} \frac{\ln(1+x)}{x} = 3 \cdot 1 = 3.$$

е) имеем:

$$\lim_{x \to 5} \frac{\sin(x-5)}{x^2 - 6x + 5} = \left(\frac{0}{0}\right) = \lim_{x \to 5} \frac{\sin(x-5)}{(x-5)(x-1)} = x - 5 = t =$$

$$= \lim_{t \to 0} \frac{\sin t}{t(t+4)} = \lim_{t \to 0} \frac{\sin t}{t} \cdot \lim_{t \to 0} \frac{1}{t+4} = 1 \cdot \frac{1}{4} = \frac{1}{4}.$$

ж) имеем:

$$\lim_{x \to 0} (1+2x)^{\frac{1}{x}} = (1^{\infty}) = \begin{bmatrix} \text{введем новую} \\ \text{переменную} \ y = 2x \end{bmatrix} = \\ = \lim_{y \to 0} (1+y)^{\frac{2}{y}} = \left(\lim_{y \to 0} (1+y)^{\frac{1}{y}}\right)^2 = e^2.$$

и) имеем:

$$\lim_{y \to 0} \frac{e^{\frac{y}{2}} - 1}{y} = \left(\frac{0}{0}\right) = \lim_{y \to 0} \frac{e^{\frac{y}{2}} - 1}{\frac{2y}{2}} = \left[\frac{y}{2} = x\right] = \frac{1}{2} \lim_{x \to 0} \frac{e^{x} - 1}{x} = \frac{1}{2} \cdot 1 = \frac{1}{2}.$$

Тема 5 Непрерывность функции

1 Докажите непрерывность следующих функций:

2 Функция f(x) определена в окрестности точки $x_0 = 1$, исключая саму точку x_0 . Доопределите функцию f(x) задав $f(x_0)$ так, чтобы получившаяся функция была непрерывна в точке x_0 :

a)
$$f(x) = \frac{x^2 - 1}{x - 1}$$
;
 5) $f(x) = \frac{\sin(1 - x)}{x - 1}$.
3 Исследовать на непрерывность сложную

3 Исследовать на непрерывность сложную функцию $y = x \sin \frac{1}{x} \ .$

4 Непрерывна ли функция

$$f(x) = \begin{cases} 1, & \text{при } x < 0, \\ x + 1, & \text{при } 0 \le x < 1, \\ -x^2 + 4x - 1, & \text{при } 1 \le x < 3, \\ 5 - x, & \text{при } x \ge 3? \end{cases}$$

5 Установите, как надо доопределить функцию в точке x = a, чтобы функция в этой точке была непрерывна:

a)
$$f(x) = \frac{e^{2x} - 1}{3x}$$
, $x = 0$; 6) $f(x) = \frac{x^2 - 4x + 3}{x^2 - 7x + 12}$, $x = 3$.

6 Докажите, что уравнение $x^3 + 4x - 6 = 0$ имеет по меньшей мере один действительный корень в промежутке (1;2).

7 Исследовать функцию $y = \frac{[x]}{x}$ на непрерывность, и построить график функции.

8 Найти точки разрыва функций и установить их тип:

Примеры оформления решения

1 Доказать непрерывность функции y = ax + b.

 $P\,e\,w\,e\,h\,u\,e$. Функция y=ax+b определена при всех значениях x, т.е. $\forall x\in \square$. Фиксируем некоторое значение x_0 из этого множества.

Тогда

$$\forall \, \varepsilon > 0 \quad \left| \, y(x) - y(x_0) \right| = \left| ax + b - ax_0 - b \right| = \left| ax - ax_0 \right| = \left| a \right| \cdot \left| x - x_0 \right| \, .$$
 Как только $\left| x - x_0 \right| < \delta$, то $\left| \, y(x) - y(x_0) \right| < \left| a \right| \cdot \delta$.

Следовательно,

$$\forall \varepsilon > 0 \quad \exists \quad \delta = \frac{\varepsilon}{|a|} : |x - x_0| < \delta \implies$$
$$|y(x) - y(x_0)| < |a| \cdot \delta = |a| \cdot \frac{\varepsilon}{|a|} = \varepsilon.$$

2 Исследовать на непрерывность сложные функции

a)
$$y = e^{-\frac{1}{x}}$$
, 6) $y = \sin x^4$.

 $P\,e\,w\,e\,h\,u\,e\,.$ а) функция $y=e^{-\frac{1}{x}}$ является композицией следующих элементарных функций: $y=-\frac{1}{x}$ и $f=e^y$. Так как функция $y=-\frac{1}{x}$ не определена в точке x=0, то функция не

является непрерывной в этой точке. В остальных точках она непрерывна как композиция непрерывных функций.

- б) функция $y = \sin x^4$ является композицией функций $y = \sin z$ и $z = x^4$. Так как функции y и z непрерывны при всех значениях своих аргументов, то по теореме о непрерывности сложной функции $y = \sin x^4$ также непрерывна при всех x.
 - 3 Доопределить функцию

$$f(x) = \begin{cases} \frac{\sin x}{x}, \text{ если } x \neq 0, \\ 0, \text{ если } x = 0, \end{cases}$$

задав $f(x_0)$ так, чтобы получившаяся функция была непрерывна в точке x_0 .

Решение. Функция

$$f(x) = \begin{cases} \frac{\sin x}{x}, \text{ если } x \neq 0, \\ 0, \text{ если } x = 0 \end{cases}$$

непрерывна во всех точках числовой прямой кроме точки x=0 . Поскольку $\lim_{\substack{x\to 0\\x\neq 0}}\frac{\sin x}{x}=1\neq 0$, то в точке x=0 функция имеет

устранимый разрыв. Этот разрыв можно устранить, положив

$$f_1(x) = \begin{cases} \frac{\sin x}{x}, & \text{если } x \neq 0, \\ 1, & \text{если } x = 0. \end{cases}$$

4 Доказать, что уравнение $x^3 - 4x + 2 = 0$ имеет по меньшей мере один действительный корень в указанном промежутке (0,1).

 $P\,e\,w\,e\,h\,u\,e$. Рассмотрим функцию $f(x)=x^3-4x+2$. Она непрерывна при всех x (как сумма непрерывных функций $f_1=x^3$, $f_2=-4x$, $f_3=2$). Так как f(0)=2>0 и f(1)=-1<0, то между точками 0 и 1 найдется точка x_0 , в которой эта функция обращается в нуль: $f(x_0)=0$. Поэтому x_0 — корень уравнения.

5 Найти точки разрыва функции y = [x], где [x] – целая часть числа, и построить график.

 $P\ e\ u\ e\ h\ u\ e$. Функция E(x) определена следующим образом: если x=n+q, где n — целое число, а $0\le q\le 1$, то [x]=n, т.е. функция равна целой части числа. Областью определения данной функции является множество \square . Функция y=[x] терпит разрыв при каждом целочисленном значении x. Действительно, пусть $x_0=n$, тогда $y(x_0)=n$ и $\lim_{x\to x_0=0}y=n-1$, а $\lim_{x\to x_0+0}y=n$. Причем каждая из этих точек является точкой разрыва первого рода (рисунок 2.4).

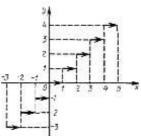


Рисунок 2. 4 – График функции y = [x]

Во всех точках $x \in \Box \setminus \Box$ функция y = [x] является непрерывной как постоянная.

6 Определить точки разрыва функции $y = e^{\frac{z}{x-1}}$.

 $P \, e \, w \, e \, h \, u \, e$. Данная функция не определена в точке x = 1 .

Односторонние пределы равны:

$$\lim_{x \to 1-0} e^{\frac{2}{x-1}} = 0, \quad \lim_{x \to 1+0} e^{\frac{2}{x-1}} = +\infty.$$

Поскольку один из односторонних пределов является бесконечностью, то x=1 является точкой разрыва второго рода этой функции.

Раздел 3 Дифференциальное исчисление функции действительной переменной

Тема 1 Определение производной

1 Пользуясь определением производной, получить формулы для производных для данных функций в точке x_0 :

a)
$$y = 3x^2$$
;
B) $y = \frac{1}{x}$;

6)
$$y = x \cdot \ln x$$
; Γ $y = \operatorname{tg} \pi x - x$.

Найти дифференциалы этих функций в точке $x_0 = 1$.

2 Доказать, что функция Хевисайда

$$\eta(x) = \begin{cases} 0 & \text{при } x < 0, \\ 1 & \text{при } x \ge 0 \end{cases}$$

в точке $x_0 = 0$ не является дифференцируемой.

3 Вычислить приближенно с помощью дифференциала:

a)
$$\sqrt[3]{0,1002}$$
;

B)
$$e^{-0.85}$$
;

б) sin 31°;

г) arctg 1,03.

4 Составить уравнения касательной и нормали к графику функций в указанной точке:

a)
$$y = \sin x$$
 в точке $x_0 = \frac{\pi}{3}$;

б)
$$y = x^4 + 5x^3 - 3x^2 + 6x - 4$$
 в точке $x_0 = 1$.

5 Точка совершает гармоническое колебательное движение по закону $x=A\sin\omega t$. Определить скорость движения в момент времени $t_0=\frac{2\pi}{\omega}$.

6 Используя правила дифференцирования и таблицу производных, найти производные и дифференциалы следующих функций:

a)
$$y = 3x^4 + 5x^2 - 6x - 4$$
;

$$\Gamma) \ \ y = \left(\sqrt{x} - \sqrt[3]{x}\right)^2;$$

$$6) y = \frac{e^x}{\sinh x};$$

д)
$$y = (x^2 + 1) \cdot \operatorname{arctg} x$$
;

$$B) y = \operatorname{th} x + 2^{x} \cdot \operatorname{ch} x;$$

e)
$$y = \frac{\log_3 x}{2x^3 + 3}$$
.

Примеры оформления решения

1 Пользуясь определением производной, найти значение производной функции y = f(x) в точке x_0 :

a)
$$y = x^3$$
 в точке $x_0 = 1$,

- б) $y = \sin x$, в произвольной точке x_0 ,
- в) $y = a^x$, a > 0, в произвольной точке x_0 .

Pewehue. а) находим приращение функции $y = x^3$ в точке x = 1: $\Delta y = (1 + \Delta x)^3 - 1 = 3\Delta x + 3(\Delta x)^2 + (\Delta x)^3$.

Тогда по определению

$$y'(1) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(3 + 3\Delta x + (\Delta x)^2 \right) = 3$$

б) имеем:

$$\frac{\Delta y}{\Delta x} = \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \frac{2\cos\left(x + \frac{\Delta x}{2}\right)\sin\left(\frac{\Delta x}{2}\right)}{\Delta x} =$$

$$= \cos\left(x + \frac{\Delta x}{2}\right)\frac{\sin\left(\frac{\Delta x}{2}\right)}{\frac{\Delta x}{2}}.$$

Поэтому

$$\left(\sin x\right) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \cos\left(x + \Delta x/2\right) \frac{\sin\left(\Delta x/2\right)}{\frac{\Delta x}{2}} = \cos x \cdot 1 = \cos x.$$

в) для функции $y = a^x$, a > 0, получим

$$\frac{\Delta y}{\Delta x} = \frac{a^{x + \Delta x} - a^x}{\Delta x} = a^x \cdot \frac{a^{\Delta x} - 1}{\Delta x}.$$

Тогда

$$\left(a^{x}\right) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} a^{x} \cdot \frac{a^{\Delta x} - 1}{\Delta x} = a^{x} \ln a.$$

2 Доказать, что функция y = |x| в точке $x_0 = 0$ не является дифференцируемой.

Pewehue. Очевидно, что эта функция определена и непрерывна на множестве \square . Вычислим производную функции справа в точке $x_0=0$.

При $x \ge 0$ имеем y = |x| = x, $\Delta y = \Delta x$.

Поэтому

$$f'_{+}(0) = f'(0+0) = \lim_{\Delta x \to 0+0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x}{\Delta x} = 1$$
.

Аналогично при x < 0 получим y = |x| = -x, $\Delta y = -\Delta x$.

Следовательно, производная слева равна

$$f'(0) = f'(0-0) = \lim_{\Delta x \to 0-0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x}{\Delta x} = -1$$
.

Поскольку $f_{-}(0) \neq f_{+}(0)$, то функция y = |x| в данной точке производной не имеет.

Следовательно, она не дифференцируема в этой точке.

3 Найти дифференциал функции $y = x^2 - x + 3$ в точке x = 2.

Решение. Используя определение дифференциала, находим:

$$\Delta y = f(2 + \Delta x) - f(2) = (2 + \Delta x)^2 - (2 + \Delta x) + 3 - (2^2 - 2 + 3) =$$

$$= 3\Delta x + (\Delta x)^2.$$

Откуда $dy = 3\Delta x = 3dx$.

4 Вычислить приближенно с помощью дифференциала значение $\sqrt{0.98}$.

P е u е h u е . Рассмотрим функцию $y(x) = \sqrt{1+x}$.

Так как $y(-0.02) = \sqrt{0.98}$, и

$$y(0)=1,$$
 $y'(x)=\frac{1}{2}(1+x)^{-\frac{1}{2}},$ $y'(0)=\frac{1}{2},$

то получаем:

$$y(-0.02) \approx y(0) + y'(0) \cdot (-0.02) = 1 - 0.01 = 0.99$$
.

5 Составить уравнения касательной и нормали к графику функции $y = \cos x$ в точке $x_0 = \frac{\pi}{6}$.

Решение. Имеем:

$$x_0 = \frac{\pi}{6}$$
, $y(x_0) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $y'(x_0) = -\sin\frac{\pi}{6} = -\frac{1}{2}$.

Поэтому искомое уравнение касательной запишется так

$$y - \frac{\sqrt{3}}{2} = -\frac{1}{2} \left(x - \frac{\pi}{6} \right),$$

а уравнение нормали примет вид:

$$y - \frac{\sqrt{3}}{2} = 2\left(x - \frac{\pi}{6}\right).$$

6 Вычислить и сравнить на промежутке $0 \le t \le 1$ мгновенные скорости двух точек, прямолинейные движения которых заданы уравнениями $S_1 = t^2$, $S_2 = 2t^4$ $(t \ge 0)$.

 $P\,e\, w\,e\, h\, u\, e\, .$ Находим мгновенные скорости точек в момент времени $t\, :$

$$V_1(t) = S_1'(t) = 2t$$
,
 $V_2(t) = S_2'(t) = 8t^3$.

Отсюда получаем: $V_1(0) = V_2(0) = 0$.

Видно, что $\forall t \in \left(0, \frac{1}{2}\right)$ выполняется неравенство $V_1(t) > V_2(t)$, и

$$\forall t \in \left(\frac{1}{2}, 1\right] - \text{неравенство } V_1(t) < V_2(t).$$

Следовательно, в точке
$$t = \frac{1}{2}$$
 имеем $V_1 \left(\frac{1}{2} \right) = V_2 \left(\frac{1}{2} \right)$.

7 Используя правила дифференцирования и таблицу производных, вычислить производные следующих функций:

a)
$$y = \frac{3}{\sqrt[3]{x}} - \frac{6}{\sqrt[3]{x^2}}$$
, 6) $y = \frac{3x - 2}{4x + 5}$, B) $y = x\cos x - x^2 \sin x$.

Решение. а) перепишем функцию в виде:

$$y = 3x^{-\frac{1}{3}} - 6x^{-\frac{2}{3}}.$$

 $P\,e\,w\,e\,h\,u\,e$. На рисунке 3. 3 изображена трапеция ABCD. Пусть AB=a. Тогда по условию AB=CD=BC=a. Пусть BE и CF — высоты трапеции; BE=CF. Полагая $\angle BAD=\alpha$, выразим площадь трапеции как функцию от α :

$$S = S(\alpha), \ 0 < \alpha < \frac{\pi}{2}.$$

Рисунок 3. 3 – Геометрическая интерпретация задачи 6

Площадь трапеции АВСО равна

$$S_{ABCD} = S_{ABE} + S_{BCFE} + S_{CDF}$$

Из геометрических соображений имеем:

$$S_{ABE} = S_{CDF} = \frac{1}{2}AE \cdot BE = \frac{1}{2}a\cos\alpha \cdot a\sin\alpha = \frac{1}{4}a^2\sin2\alpha,$$

$$S_{BCFE} = BC \cdot BE = a^2 \sin \alpha .$$

Тогда площадь трапеции равна

$$S(\alpha) = \frac{1}{2}a^2 \sin 2\alpha + a^2 \sin \alpha.$$

Исследуем функцию $S(\alpha)$ на экстремум.

$$S'(\alpha) = a^2(\cos 2\alpha + \cos \alpha).$$

Решая уравнение $S'(\alpha) = 0$, получим:

$$\cos 2\alpha + \cos \alpha = 0 \implies \cos \alpha = -1$$
 и $\cos \alpha = \frac{1}{2}$.

Отсюда

$$\alpha_1 = \pi + 2n\pi, n \in \square$$

$$\alpha_2 = \frac{\pi}{3} + 2k\pi$$
 , $k \in \square$.

Единственным решением этого уравнения, лежащим на $\left(0;\frac{\pi}{2}\right)$

является $\alpha=\frac{\pi}{3}$. Убедимся, что при $\alpha=\frac{\pi}{3}$ функция $S(\alpha)$ достигает максимума.

$$S''(\alpha) = -a^2 (2\sin 2\alpha + \sin \alpha).$$

Так как
$$\sin \frac{2\pi}{3} > 0$$
, $\sin \frac{\pi}{3} > 0$, $a > 0$, то $S''(\frac{\pi}{3}) < 0$.

Значит, при $\alpha=\frac{\pi}{3}$ функция $S(\alpha)$ достигает наибольшего значения на интервале $\left(0;\frac{\pi}{2}\right)$. Угол при большем основании трапеции равен $\alpha=\frac{\pi}{3}$.

Тема 7 Исследование функции

1 Найти интервалы выпуклости и точки перегиба функций:

a)
$$f(x) = 2x^4 - 3x^2 + x - 1$$
;

e)
$$f(x) = \frac{1}{1 - x^2}$$
;

$$6) f(x) = \frac{\sqrt{x}}{x+1};$$

ж)
$$f(x) = x - \cos x$$
;

B)
$$f(x) = e^{-x^2}$$
;

и)
$$f(x) = (x^2 - 1)^3$$
;

r)
$$f(x) = x + 36x^2 - 2x^3 - x^4$$
;

$$f(x) = 1 + x^2 - \frac{x^4}{2};$$

д)
$$f(x) = xe^{-\frac{x^2}{4}};$$

$$\pi) f(x) = \frac{1}{(x-1)^2}.$$

2 Найти асимптоты графиков функций:

a)
$$y = \sqrt{\frac{x^3}{x - 2}}$$
;

$$\Gamma) y = x^2 e^{-x};$$

6)
$$y = \frac{\ln^2 x}{r} - 3x$$
;

д)
$$y = x + \operatorname{arctg} 2x$$
;

B)
$$y = 2x - \frac{\cos x}{x}$$
; e) $y = 2^{\frac{1}{1-x}}$.

3 Исследовать функции:

6)
$$f(x) = (x-1)^2(x+2)$$
; e) $f(x) = x^3 - 5x^2 + 3x - 1$;

г)
$$f(x) = \frac{x^3}{x^2 - 1}$$
; и) $f(x) = \frac{x^2 + x}{x - 1}$.

Примеры оформления решения

1 Найти промежутки выпуклости и вогнутости графика функции $y = x^5 + 5x - 6$.

Решение. Имеем:

$$y' = 5x^4 + 5$$
,
 $y'' = 20x^3$.

Если x < 0, то y'' < 0 и кривая выпукла.

Если x > 0 , то $y^{"} > 0$ и кривая вогнута.

Итак, кривая выпукла на промежутке $(-\infty;0)$, вогнута на промежутке $(0;+\infty)$.

2 Найти точки перегиба графика функции:

a)
$$y = (x+1)^2(x-2)$$
; 6) $y = \sqrt[3]{(x-5)^5} + 2$.

 $P\,e\, m\,e\, h\, u\, e$. a) первая и вторая производные равны соответственно

$$y' = 3(x^2 - 1),$$
$$y'' = 6x.$$

Так как $y^{''}=0$ в точке x=0, то исследуем эту точку на перегиб. В окрестности точки x=0 при x<0, то $y^{''}<0$ и кривая выпукла, при x>0, то $y^{''}>0$ и кривая вогнута. Следовательно, x=0 — точка перегиба, при этом $y_{\rm nep}=-2$;

б) имеем:

$$y' = \frac{5}{3}(x-5)^{\frac{2}{3}}, \ y'' = \frac{10}{9\sqrt[3]{x-5}}.$$

Вторая производная не обращается в нуль ни при каких значениях x и не существует в точке x=5. В окрестности точки x=5 получим при x<5, то $y^{"}<0$ и кривая выпукла, при x>5, то $y^{"}>0$ и кривая вогнута. Следовательно, x=5 — точка перегиба, при этом $y_{\rm nep}=2$.

3 Найти асимптоты графика функции $y = \frac{x^2 - 2x + 3}{x + 2}$.

Решение. 1) функция определена на промежутках

$$(-\infty;-2)\cup(-2;+\infty).$$

Так как

$$\lim_{x \to -2-0} \frac{x^2 - 2x + 3}{x + 2} = -\infty, \ \lim_{x \to -2+0} \frac{x^2 - 2x + 3}{x + 2} = +\infty,$$

то прямая x = -2 является вертикальной асимптотой;

2) наклонные асимптоты:

$$k = \lim_{x \to \infty} \frac{x^2 - 2x + 3}{x(x+2)} = 1,$$

$$b = \lim_{x \to \infty} \left[f(x) - kx \right] = \lim_{x \to \infty} \left[\frac{x^2 - 2x + 3}{(x+2)} - x \right] = -4.$$

Следовательно, наклонная асимптота имеет вид

$$y = x - 4;$$

3) горизонтальных асимптот нет, так как

$$\lim_{x\to\infty}\frac{x^2-2x+3}{(x+2)}=\infty.$$

4 Исследовать функцию $y = \frac{x^3}{3 - x^2}$ и построить ее график.

Pewehue. Для построения графика функции проведем ее исследование по приведенной схеме.

1) находим D(f), определяем точки разрыва, нули, точки пересечения графика функции с осью Oy, периодичность, симметрию. Функция неопределенна в точках, где знаменатель

обращается в нуль, т. е. при $x_1=-\sqrt{3}$, $x_2=\sqrt{3}$. Следовательно, область определения есть $D(f)=\left(-\infty;-\sqrt{3}\right)\cup\left(-\sqrt{3};\sqrt{3}\right)\cup\left(\sqrt{3};\infty\right)$.

Исследуем поведение функции в окрестностях точек $x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$:

$$\lim_{x \to \sqrt{3} \to 0} \frac{x^3}{3 - x^2} = +\infty, \quad \lim_{x \to \sqrt{3} \to 0} \frac{x^3}{3 - x^2} = -\infty,$$

$$\lim_{x \to -\sqrt{3} \to 0} \frac{x^3}{3 - x^2} = -\infty, \quad \lim_{x \to \sqrt{3} \to 0} \frac{x^3}{3 - x^2} = +\infty.$$

Следовательно, точки $x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$ являются точками разрыва второго рода.

Поскольку $\lim_{x\to -\infty} \frac{x^3}{3-x^2} = +\infty$ и $\lim_{x\to +\infty} \frac{x^3}{3-x^2} = -\infty$, то здесь функция неограничена.

График функции пересекает координатные оси в только в начале координат, так как $y=0 \iff x=0$.

Функция не является периодичной.

Функция нечетная, так как область определения D(f) симметрична и f(-x) = -f(x), т. е.

$$\frac{(-x)^3}{3-x^2} = \frac{-x^3}{3-x^2}.$$

Следовательно, график функции симметричен относительно начала координат и достаточно исследовать функцию для $x \ge 0$;

2) асимптоты графика функции. Поскольку односторонние пределы в точках $x_1=-\sqrt{3}$, $x_2=\sqrt{3}$ раны бесконечности, то прямые $x=-\sqrt{3}$ и $x=\sqrt{3}$ являются вертикальными асимптотами графика функции.

Вычислим пределы:

$$k = \lim_{x \to \infty} = \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3}{(3 - x^2)x} = -1,$$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{x^3}{3 - x^2} + x\right) = \lim_{x \to \infty} \frac{x^3 + 3x - x^3}{3 - x^2} = 0,$$

Прямая y = -x является наклонной асимптотой графика

функции;

3) точки возможного экстремума и интервалы монотонности функции. Находим первую производную функции:

$$y' = \frac{3x^2(3-x^2)+2x^4}{(3-x^2)^2} = \frac{x^2(9-x^2)}{(3-x^2)^2}.$$

Функция y определена на D(f). В промежутке $[0;+\infty)$ производная обращается в нуль в точках $x_1=0$, $x_2=3$.

Определяем интервалы монотонности из неравенств y'>0 и y'<0 для любого $x\geq 0$.

Имеем:

$$\frac{x^2(9-x^2)}{(3-x^2)^2} > 0, \ 9-x^2 > 0 \implies 0 < x < 3,$$

т. е. функция возрастает на $(0;\sqrt{3})$ \cup $(\sqrt{3};3)$.

Аналогично:

$$\frac{x^2(9-x^2)}{(3-x^2)^2} < 0, 9-x^2 < 0 \implies x > 3,$$

т. е. функция убывает на $[3;\infty)$;

4) промежутки выпуклости и вогнутости, точки перегиба.

Вычисляем вторую производную функции $y = \frac{x^3}{3-x^2}$:

$$y'' = \frac{\left(18x - 4x^3\right)\left(3 - x^2\right)^2 - \left(9x^2 - x^4\right)2\left(3 - x^2\right)\left(-2x\right)}{\left(3 - x^2\right)^4} = \frac{6x\left(9 - x^2\right)}{\left(3 - x^2\right)^3}.$$

Функция y " определена на области определения D(f).

Находим интервалы вогнутости и выпуклости графика функции из неравенств y'' > 0, y'' < 0 для любого $x \ge 0$.

Имеем:

$$\frac{6x(9-x^2)}{(3-x^2)^3} > 0,$$

$$\begin{cases} x > 0, \\ 3-x^2 > 0 \end{cases} \Rightarrow \begin{cases} x > 0, \\ -\sqrt{3} < x < \sqrt{3} \end{cases} \Rightarrow 0 < x < \sqrt{3},$$

т. е. кривая вогнута на $(0; \sqrt{3})$.

Аналогично:

$$\frac{6x(9+x^2)}{(3-x^2)^3} < 0,$$

$$\begin{cases} x > 0, \\ 3-x^2 < 0 \end{cases} \Rightarrow \begin{cases} x > 0, \\ 3 < x^2 \end{cases} \Rightarrow \begin{cases} x > 0, \\ x < -\sqrt{3}, x > \sqrt{3} \end{cases} \Rightarrow x > \sqrt{3},$$

т. е. кривая выпукла на $(\sqrt{3}; \infty)$.

В точке x=0 имеем y''=0 и y''(x)<0 в окрестности $U(\delta;0-0)$, а y''(x)>0 в окрестности $U(\delta;0+0)$. Значит, точка кривой с абсциссой x=0 отделяет интервал выпуклости кривой от ее интервала вогнутости. Поэтому O(0;0) является точкой перегиба кривой;

5) локальные экстремумы. Определяем с помощью второй производной y"(x) локальные экстремумы. Так как y"(3)=0, точка A_1 с абсциссой x=3 является точкой локального максимума. В силу симметрии графика функции точка A_2 с абсциссой x=-3 является точкой локального минимума. Итак, $\max_{x\in U(\delta;3)}y(x)=-4,5$, $\min_{x\in U(\delta;-3)}y(x)=4,5$.

Результаты исследования функции заносим в таблицу 3.1.

Таблица 3. 1 – Результаты исследования функции

	Two times of T T to your mile it to the Actual Printers						
x	0	$\left(0;\sqrt{3}\right)$	$\sqrt{3}$	$\left(\sqrt{3};3\right)$	3	(3;∞)	
y '	0	+	Не сущ.	+	0	_	
y"	0	+	Не сущ.	_	=	_	
у	0		Не сущ.	_	-4,5	/	
	(т.перег)				max		

Исходя из результатов, содержащихся в таблице 3. 1, строим график данной функции для $x \in [0,\infty)$. Используя нечетность функции, достраиваем ее график на всей области определения (рисунок 3.4).

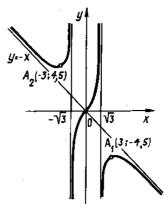


Рисунок 3. 4 – График функции $y = \frac{x^3}{2}$

Тема 8 Построение графика функции

1 Исследовать функции и построить их графики:

a)
$$f(x) = x + \sqrt{x^2 - 1}$$
;

a)
$$f(x) = x + \sqrt{x^2 - 1}$$
; $f(x) = \sqrt{x^2 + 1} - 2\sqrt{x + 1}$;

6)
$$f(x) = \sqrt{2x^3 + 9x^2}$$
;

6)
$$f(x) = \sqrt{2x^3 + 9x^2}$$
; e) $f(x) = \frac{\sqrt{4x^2 - 1}}{x}$;

$$B) f(x) = e^x - x;$$

ж)
$$f(x) = (x-2)e^{-\frac{1}{x}}$$
;

$$\Gamma) f(x) = \ln x - x + 1;$$

$$u) f(x) = \sin x - \sin^2 x.$$

в) $f(x) = e^x - x$; ж) $f(x) = (x-2)e^{-\frac{1}{x}}$; г) $f(x) = \ln x - x + 1$; и) $f(x) = \sin x - \sin^2 2$ Исследовать следующие функции, заданные параметрическими уравнениями, и построить график:

a)
$$x = \frac{1}{4}(t+1)^2$$
, $y = \frac{1}{4}(t-1)^2$; b) $x = \frac{t^2}{t-1}$, $y = \frac{t}{t^2-1}$.

B)
$$x = \frac{t^2}{t-1}$$
, $y = \frac{t}{t^2 - 1}$

6)
$$x = \frac{t^2}{1 - t^2}$$
, $y = \frac{1}{1 + t^2}$; r) $x = -5t^2 + 2t^5$, $y = -3t^2 + 2t^3$;

3 Исследовать следующие функции, заданные неявно, и построить график:

a)
$$xy^2 - y^2 - 4x = 0$$
; б) $x^6 + 2x^3y = y^3$ (положить $y = x^2t$).

4 Исследовать следующие функции, заданные в полярных координатах и построить график:

Примеры оформления решения

1 Исследовать функцию $y = \arcsin \frac{2x}{1+x^2}$ и построить ее график.

$$\left|\frac{2x}{1+x^2}\right| \le 1.$$

Данное неравенство равносильно неравенству $(1-|x|^2) \ge 0$, которое верно для любых вещественных x.

Итак, $D(f) = \square$.

Функция $\frac{2x}{1+x^2}$ непрерывна в любой точке (как частное двух

непрерывных функций). Поэтому функция $y = \arcsin \frac{2x}{1+x^2}$ также непрерывна в любой точке (как суперпозиция непрерывных функций).

Функция непериодическая.

Поскольку

$$y(-x) = \arcsin \frac{2(-x)}{1+(-x)^2} = -\arcsin \frac{2x}{1+x^2} = y(x),$$

то функция является нечетной. Поэтому вместо всей области определения достаточно рассмотреть полупрямую $[0;+\infty)$.

При x = 0 имеем y = 0. Других нулей функция не имеет. На полупрямой $(0; +\infty)$ функция является положительной;

2) асимптоты графика функции. В силу непрерывности функции $y = \arcsin \frac{2x}{1+x^2}$ на \square , график функции не имеет вертикальных асимптот. Для нахождения наклонной асимптоты

при $x \to +\infty$ вычислим следующие пределы:

$$k = \lim_{x \to +\infty} = \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \arcsin \frac{2x}{1+x^2} = 0,$$

$$b = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} \arcsin \frac{2x}{1+x^2} = \arcsin 0 = 0.$$

Отсюда следует, что прямая y = 0 является горизонтальной асимптотой при $x \to +\infty$.

Аналогично устанавливается, что прямая y = 0 – горизонтальной асимптотой при $x \to -\infty$;

3) точки возможного экстремума и интервалы монотонности функции.

Найдем точки возможного экстремума на полупрямой $[0;+\infty)$. Вычислим производную функции при $x \neq 1$:

$$y' = \left(\arcsin\frac{2x}{1+x^2}\right)' = \frac{1}{\sqrt{1-\frac{4x^2}{\left(1+x^2\right)^2}}} \cdot \frac{2\left(1+x^2\right) - 4x^2}{\left(1+x^2\right)^2} = \frac{1+x^2}{\left|1-x^2\right|} \cdot \frac{2\left(1-x^2\right)}{\left(1+x^2\right)^2} = \frac{2\operatorname{sgn}(1-x^2)}{1+x^2}.$$

Отсюда видно, что производная не обращается в нуль ни в одной точке. Так как y'(1+0)=-1, y'(1-0)=1, то точка x=1 является точкой излома. Значит, имеем только одну точку возможного экстремума x=1.

Промежутки монотонности функции определяются знаком производной: y > 0 при $x \in [0;1), y < 0$ при $x \in (1;+\infty)$.

Знак производной при переходе через точку x=1 меняется с плюса на минус. Поэтому в точке x=1 функция имеет локальный максимум, причем $y(1)=\arcsin 1=\frac{\pi}{2}$.

Отметим, что в точке x=1 функция непрерывна, а ее производная имеет разрыв 1-го рода. Значит, точка графика $\left(1;\frac{\pi}{2}\right)$ является угловой точкой;

4) промежутки выпуклости и вогнутости, точки перегиба. Вторая производная при $x \neq 1$ имеет вид

$$y'' = \frac{-4x \operatorname{sgn}(1 - x^2)}{(1 + x^2)^2}.$$

Направление выпуклости определяется знаком второй производной:

- $-y^{"}<0$ при $x\in[0;1)$, значит график функции на этом промежутке выпуклый,
- $-y^{"}>0$ при $x\in (1;+\infty)$, значит график функции на этом промежутке вогнут.

Так как вторая производная обращается в нуль лишь при x=0 и при переходе через точку x=0 меняет знак, то в точке (0;0) график функций имеет перегиб.

Результаты исследования функции заносим в таблицу 3. 2.

Таблица 3. 2 – Результаты исследования функции $y = \arcsin \frac{2x}{1+x^2}$

х	0	(0;1)	1	(1;∞)
y '	2	+	Не сущ.	_
y"	0	_	Не сущ.	+
У	0		$\frac{\pi}{2}$	/
	Точка		max	
	перег.		Угл.точ.	

Исходя из результатов, содержащихся в таблице 3.2, строим график данной функции на полупрямой $[0;\infty)$.

Используя нечетность функции, достраиваем ее график на всей области определения (рисунок 4. 5).

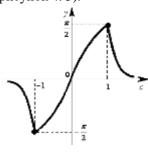


Рисунок 3. 5 – График функции
$$y = \arcsin \frac{2x}{1+x^2}$$

2 Исследовать функцию, заданную параметрическими уравнениями, и построить график

$$x = \frac{t}{1-t^2}, \ y = \frac{t(1-2t^2)}{1-t^2}.$$

 $P \, e \, w \, e \, h \, u \, e$. 1) функции x(t), y(t) определены на множестве

$$T = (-\infty; -1) \cup (-1; 1) \cup (1; +\infty).$$

Поскольку

$$\lim_{t \to -\infty} x(t) = 0, \lim_{t \to -\infty} y(t) = -\infty,$$

$$\lim_{t \to +\infty} x(t) = 0, \lim_{t \to \infty} y(t) = -\infty,$$

то x = 0 — вертикальная асимптота кривой.

Найдем односторонние пределы в точках t = -1 и t = 1:

$$\lim_{t \to -1-0} x(t) = +\infty , \lim_{t \to -1+0} x(t) = -\infty ,$$

$$\lim_{t \to -1-0} y(t) = -\infty , \lim_{t \to -1+0} y(t) = +\infty ,$$

$$\lim_{t \to 1-0} x(t) = +\infty , \lim_{t \to 1+0} x(t) = -\infty ,$$

$$\lim_{t \to 1-0} y(t) = -\infty , \lim_{t \to 1+0} y(t) = +\infty .$$

Отсюда следует, что при $t \to -1$ и $t \to 1$ возможны наклонные асимптоты.

Так как при $t \to 1$

$$\lim_{x \to \pm \infty} \frac{y}{x} = \lim_{t \to 1 \pm 0} (1 - 2t^2) = -1, \quad \lim_{x \to \pm \infty} (y + x) = \lim_{t \to 1 \pm 0} \frac{1 + t - 2t^2}{1 - t^2} = \frac{3}{2},$$

то прямая $y = -x + \frac{3}{2}$ — наклонная асимптота.

Так как при $t \rightarrow -1$

$$\lim_{x \to \pm \infty} \frac{y}{x} = \lim_{t \to -1 \pm 0} (1 - 2t^2) = -1,$$

$$\lim_{x \to \pm \infty} (y+x) = \lim_{t \to -1 \pm 0} \frac{1+t-2t^2}{1-t^2} = -\frac{3}{2},$$

то прямая $y = -x - \frac{3}{2}$ — наклонная асимптота.

Итак.

$$x \in (0; +\infty) \cup (-\infty; +\infty) \cup (-\infty; 0),$$

$$y \in (-\infty; -\infty) \cup (+\infty; -\infty) \cup (+\infty; +\infty);$$

2) так как

$$x(-t) = \frac{-t}{1 - (-t)^2} = -x(t), y(-t) = \frac{-t(1 - 2(-t)^2)}{1 - (-t)^2} = -y(t),$$

то график функции симметричен относительно начала координат O(0;0). Поэтому рассмотрим график функции только на множестве $T_1 = [0;1) \cup (1;+\infty)$;

- 3) на множестве $T_1 = [0;1) \cup (1;+\infty)$ имеем x = 0 при t = 0, y = 0 при t = 0 и $t = \frac{1}{\sqrt{2}}$;
 - 4) найдем производные функций x(t), y(t):

$$\dot{x}(t) = \frac{1+t^2}{(1-t^2)^2}, \qquad \dot{y}(t) = \frac{2t^4-5t^2+1}{(1-t^2)^2}.$$

На множестве $T_1 = [0;1) \cup (1;+\infty)$ $\dot{x} = 0$ и $\dot{y} = 0$ при

$$t_1 = \frac{1}{2} \sqrt{5 - \sqrt{17}} \, \approx 0,47$$
 и $t_2 = \frac{1}{2} \sqrt{5 + \sqrt{17}} \, \approx 1,51.$

Тогда $x_1=0,6$, $y_1=0,3$ и $x_2=-0,7$, $y_2=2,3$, т. е. имеем точки возможного экстремума $M_1(0,6;0,3)$ и $M_2(-0,7;2,3)$;

5) найдем производные $y_{x}^{'}$ и $y_{xx}^{''}$:

$$y_{x} = \frac{\dot{y}}{\dot{x}} = \frac{2t^{4} - 5t^{2} + 1}{1 + t^{2}}, \qquad y_{xx} = \frac{\frac{d}{dt}(\dot{y_{x}})}{\dot{x}(t)} = \frac{-4t(1 - t^{2})^{3}(3 + t^{2})}{(1 + t^{2})^{3}}.$$

Отсюда $y_{xx}^{"} \le 0$ при $t \in [0;1), y_{xx}^{"} \ge 0$ при $t \in (1;+\infty);$

6) составим таблицу результатов исследования (таблица 3. 3):

Таблица 3. 3 – Результаты исследования функции

тиолици 5. 5 – гезультиты исследования функции							
$\left(t_{p};t_{p+1}\right)$	(0;0,47)	0,4 7	(0,47;1)	(1;1,51)	1,5 1	(1,51;+∞)	
$\left(x_{p}; x_{p+1}\right)$	(0;0,6)	0,6	(0,6;+∞)	(-∞;-0,7)	-0,7	(-0,7;0)	

$(y_p;$	y_{p+1}	(0;0,3)	0,3	(0,3;-∞)	(+∞;2,3)	2,3	(2,3;+∞)
Знак	y_{xx}	+	+	+	_	_	_

7) строим часть кривой, соответствующую множеству $T_1 = [0;1) \cup (1;+\infty)$. Далее, используя симметрию кривой, построим всю кривую (рисунок 3. 6).

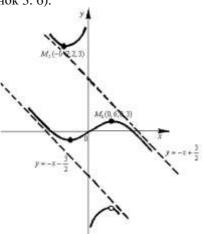


Рисунок 3. 6 – График функции

$$x = \frac{t}{1 - t^2}, \ y = \frac{t(1 - 2t^2)}{1 - t^2}.$$

3 Исследовать функцию заданную параметрическими уравнениями и построить график

$$x = 2t - t^2$$
, $y = 3t - t^3$.

Pemenue. 1) функции x(t), y(t) определены на \square .

При этом

$$\lim_{t \to -\infty} x(t) = -\infty , \lim_{t \to -\infty} y(t) = +\infty , \qquad \lim_{t \to +\infty} x(t) = -\infty , \lim_{t \to \infty} y(t) = -\infty .$$

Таким образом, возможны наклонные асимптоты.

Так как

$$\lim_{x \to -\infty} \frac{y}{x} = \lim_{t \to \pm \infty} \frac{3t - t^3}{2t - t^2} = \infty,$$

то наклонных асимптот нет;

2) симметрией и периодичностью функция не обладает;

- 3) имеем x=0 при t=0 и t=2; y=0 при t=0, $t=-\sqrt{3}$ и $t=\sqrt{3}$;
 - 4) найдем производные функций x(t), y(t):

$$\dot{x}(t) = 2(1-t),$$
 $\dot{y}(t) = 3(1-t^2).$

Имеем $\dot{x}=0$ при t=1, $\dot{y}=0$ при t=1 и t=-1. Тогда точки возможного экстремума $W\left(1;2\right),\ N\left(-3;-2\right);$

5) найдем производные $y_{r}^{'}$ и $y_{rr}^{''}$:

$$y_x' = \frac{\dot{y}}{\dot{x}} = \frac{3(1-t^2)}{2(1-t)} = \frac{3(1+t)}{2}, \ y_{xx}'' = \frac{3}{4(1-t)}, \ t \neq 1.$$

Отсюда $y_{xx}^{"} > 0$ при $t \in (-\infty;1), y_{xx}^{"} < 0$ при $t \in (1;+\infty);$

6) составим таблицу результатов исследования (таблица 3. 4);

Таблица 3. 4 – Результаты исследования функции

Twenty C. Tosyn Er in Control of Ministra							
$\left(t_{p};t_{p+1}\right)$	$(-\infty;-1)$	-1	(-1;1)	1	(1;+∞)		
$\left(x_{p}; x_{p+1}\right)$	(-∞;-3)	-3	(-3;1)	1	(1;+∞)		
$(y_p; y_{p+1})$	(+∞;-2)	-2	(-2;2)	2	(2;-∞)		
Знак $y_{xx}^{"}$	+	+	+		-		

7) строим график функции. Первая производная $y_x^{'}$ не определена в точке t=1, поэтому точка W(1;2) является угловой точкой графика.

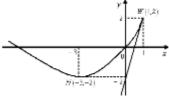


Рисунок 3. 7 – График функции $x = 2t - t^2$, $y = 3t - t^3$

4 Исследовать функцию, заданную неявно и построить ее график: $x^2 = y^2 + x^4$

 $P\,e\,w\,e\,h\,u\,e\,.$ <u>1 способ.</u> Разрешая данное уравнение относительно y , получим $y=\pm x\sqrt{1-x^2}$.

Функции $y_1 = x\sqrt{1-x^2}$ и $y_2 = -x\sqrt{1-x^2}$ симметричны относительно оси 0x, то исследование можно провести для функции y_1 . Эта функция определена на отрезке $\begin{bmatrix} -1;1 \end{bmatrix}$, т. е. $D(y_1) = \begin{bmatrix} -1;1 \end{bmatrix}$. Функция y_1 равна нулю при x = -1, x = 1, x = 0. На области определения $D(y_1)$ функция является нечетной.

Находим производные функции y_1 :

$$y_1 = \frac{1 - 2x^2}{\sqrt{1 - x^2}},$$
 $y_1 = \frac{x(2x^2 - 3)}{\sqrt{(1 - x^2)^3}}.$

Точками возможного экстремума являются точки:

$$x_1 = -\frac{1}{\sqrt{2}}, \ x_2 = \frac{1}{\sqrt{2}}, \ x_3 = -1, \ x_4 = 1.$$

Точки x_3 и x_4 являются граничными точками области определения $D\big(y_1\big)$. Определим характер точек x_1 и x_2 с помощью второй производной:

$$y_{1}''\left(-\frac{1}{\sqrt{2}}\right) = \frac{\left(-\frac{1}{\sqrt{2}}\right)\left(2\left(-\frac{1}{\sqrt{2}}\right)^{2} - 3\right)}{\sqrt{\left(1 - \left(-\frac{1}{\sqrt{2}}\right)^{2}\right)^{3}}} = 4 > 0,$$

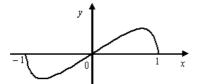
$$y_{1}''\left(\frac{1}{\sqrt{2}}\right) = \frac{\frac{1}{\sqrt{2}}\left(2\left(\frac{1}{\sqrt{2}}\right)^{2} - 3\right)}{\sqrt{\left(1 - \left(\frac{1}{\sqrt{2}}\right)^{2}\right)^{3}}} = -4 < 0.$$

Следовательно, $x_1 = -1/\sqrt{2}$ является точкой минимума, $x_2 = 1/\sqrt{2}$ — точкой максимума. Значения функции y_1 в этих точках соответственно равны:

$$y_{1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}}\sqrt{1 - \left(-\frac{1}{\sqrt{2}}\right)^{2}} = -\frac{1}{2},$$
$$y_{1}\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^{2}} = \frac{1}{2}.$$

В точке x = 0 вторая производная обращается в нуль. При $x \in (-1,0)$ имеем $y_1'' < 0$, при $x \in (0,1)$ имеем $y_1'' > 0$. Следовательно, точка O(0,0) является точкой перегиба графика функции $y_1 = x\sqrt{1-x^2}$

График функции $y_1 = x\sqrt{1-x^2}$ изображен на рисунке 3. 8. Отображая построенный график симметрично относительно оси 0x , получим график исходной функции $\,y=\pm x\sqrt{1-x^2}\,$ (рисунок 3. 9). Видно, в точке O(0,0) график пересекает себя, поэтому является точкой самопересечения.



 $y_1 = x\sqrt{1 - x^2}$

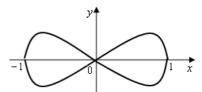


Рисунок 3. 8 – График функции Рисунок 3. 9 – График функции $x^2 = v^2 + x^4$

<u>2</u> способ. Полагая $y = x^2 \sinh t$ из уравнения $x^2 = y^2 + x^4$, получим $x^2 = \frac{1}{\operatorname{ch}^2 t}$. Отсюда $x = \pm \frac{1}{\operatorname{ch} t}$. Поскольку y(-x) = y(x), то график функции симметричен относительно оси 0 у, и поэтому будем рассматривать случай x > 0.

Тогда параметрические уравнения кривой имеют вид:

$$x(t) = \frac{1}{\operatorname{ch} t},$$
 $y(t) = \frac{\operatorname{sh} t}{\operatorname{ch}^2 t}.$

Исследование данной функции проводится по схеме для функций, заданных параметрическими уравнениями.

1) функции x(t), y(t) определены на \square .

При этом

$$\lim_{t \to -\infty} x(t) = 0, \lim_{t \to -\infty} y(t) = 0, \qquad \lim_{t \to +\infty} x(t) = 0, \lim_{t \to \infty} y(t) = 0.$$

Таким образом, наклонные асимптоты отсутствуют;

2) так как x(-t) = x(t), y(-t) = -y(t), то график функции симметричен относительно оси 0x.

Свойством периодичности функция не обладает;

- 3) имеем x = 1, y = 0 при t = 0;
- 4) найдем производные функций x(t), y(t):

$$\dot{x}(t) = -\frac{\sinh t}{\cosh^2 t}, \qquad \dot{y}(t) = \frac{1 - \sinh^2 t}{\cosh^3 t}.$$

Имеем $\dot{x} = 0$ при t = 0, $\dot{y} = 0$ в точках $t_1 = - \operatorname{arsh1}$ и $t_2 = \operatorname{arsh1}$;

5) найдем производные y_{x} и y_{xx} .

$$y_{x}' = \frac{\dot{y}}{\dot{x}} = \frac{\sinh^2 t - 1}{\sinh t \cdot \cosh t}, \qquad y_{xx}' = -\frac{\sinh^2 t \left(\sinh^2 t + \cosh^2 t\right) + 1}{\sinh^3 t}.$$

Так как y_{xx} (-arsh1) > 0, то t_{min} = -arsh1. Тогда

$$x_{\min} = 1/\sqrt{2}$$
, $y_{\min} = -1/2$.

Так как y_{xx} (arsh1) < 0 , то $t_{\max} = \operatorname{arsh1}$. Тогда

$$x_{\text{max}} = 1/\sqrt{2}$$
, $y_{\text{max}} = 1/2$;

6) строим график функции $x(t) = \frac{1}{\operatorname{ch} t}$, $y(t) = \frac{\operatorname{sh} t}{\operatorname{ch}^2 t}$ (рисунок 3. 10). Отображая симметрично относительно оси 0y, получаем график исходной функции (рисунок 3.11).

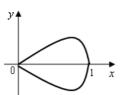


Рисунок 3. 10 – График функции

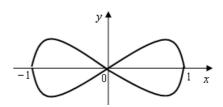


Рисунок 3. 11 – График функции $x^2 = y^2 + x^4$

$$x(t) = \frac{1}{\operatorname{ch} t}, \ y(t) = \frac{\operatorname{sh} t}{\operatorname{ch}^2 t},$$

5 Исследовать и построить график функции

$$r(\varphi) = \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi}.$$

 $P\ e\ uu\ e\ u\ e$. Данная функция при тех значениях ϕ , для которых, как следует из определения полярного радиуса, выполнено неравенство

$$\frac{3\sin\varphi\cos\varphi}{\cos^3\varphi+\sin^3\varphi}\geq 0.$$

Кроме того, функция $r(\varphi)$ является 2π периодической, то достаточно рассмотреть промежуток

$$\left[-\frac{\pi}{2}; -\frac{\pi}{4}\right] \cup \left[0; \frac{\pi}{2}\right] \cup \left(\frac{3\pi}{4}; \pi\right].$$

Поскольку

$$\lim_{\varphi \to -\frac{\pi}{4} - 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} = +\infty ,$$

$$\lim_{\varphi \to -\frac{\pi}{4} - 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} \sin(\varphi + \frac{\pi}{4}) = -\frac{1}{\sqrt{2}},$$

то прямая

$$r = -\frac{1}{\sqrt{2}\sin\left(\varphi + \frac{\pi}{4}\right)}$$

является асимптотой при $\varphi \to -\frac{\pi}{4} - 0$.

Аналогично

$$\lim_{\varphi \to \frac{3\pi}{4} + 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} = +\infty ,$$

$$\lim_{\varphi \to \frac{3\pi}{4} + 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} \sin(\varphi - \frac{3\pi}{4}) = \frac{1}{\sqrt{2}} ,$$

и прямая

$$r = \frac{1}{\sqrt{2}\sin\left(\varphi - \frac{3\pi}{4}\right)}$$

является асимптотой при $\varphi \to \frac{3\pi}{4} + 0$.

Так как $\sin\left(\varphi - \frac{3\pi}{4}\right) = -\sin\left(\varphi + \frac{\pi}{4}\right)$, то это одна и та же прямая.

Если $\cos \varphi = 0$, то следует r = 0, т. е. имеем точку x = y = 0.

При $\cos \varphi \neq 0$, полагая $t=\operatorname{tg}\varphi$, получим параметрическое задание кривой:

$$x = \frac{3t}{t^3 + 1}$$
, $y = \frac{3t^2}{t^3 + 1}$.

Найдем производные

$$\dot{x} = \frac{3(1-2t^3)}{(t^3+1)^2}, \qquad \dot{y} = \frac{3t(2-t^3)}{(t^3+1)^2}.$$

Имеем $\dot{x} = 0$ при $t = \frac{1}{\sqrt[3]{2}}$, $\dot{y} = 0$ при t = 0 и $t = \sqrt[3]{2}$.

Найдем производные f' и f'':

$$y_x' = \frac{t(2-t^3)}{1-2t^3},$$
 $y_{xx}'' = \frac{2(1+t^3)^4}{3(1-2t^3)^3}.$

При $t \in (-\infty; -1)$ имеем y_x '<0 и y_{xx} ">0, значит функция убывает и вогнута, следовательно, подходит к асимптоте сверху.

При $t \in (-1;0)$ имеем $y_x' < 0$ и $y_{xx}" > 0$, значит, функция убывает и вогнута. При этом

$$x_{\min} = y_{\min} = 0$$

При $t \in \left(0; \frac{1}{\sqrt[3]{2}}\right)$ имеем $y_x' > 0$ и $y_{xx}'' > 0$, значит, функция

возрастает и вогнута. При этом

$$x\left(\frac{1}{\sqrt[3]{2}}\right) = \sqrt[3]{4}, \quad y\left(\frac{1}{\sqrt[3]{2}}\right) = \sqrt[3]{2}.$$

При $t \in \left(\frac{1}{\sqrt[3]{2}}; \sqrt[3]{2}\right)$ имеем $y_x' < 0$ и $y_{xx}'' < 0$, значит, функция

возрастает и выпукла. При этом

$$x_{\text{max}} = x(\sqrt[3]{2}) = \sqrt[3]{2}, \quad y_{\text{max}} = y(\sqrt[3]{2}) = \sqrt[3]{4}.$$

При $t \in (\sqrt[3]{2}; +\infty)$ имеем $y_x' > 0$ и $y_{xx}'' < 0$, значит, функция возрастает и выпукла.

Так как $\lim_{t\to +\infty} \frac{\dot{y}}{\dot{x}} = +\infty$, то $O\left(0;0\right)$ является точкой возврата.

График функции $r(\varphi) = \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi}$ называется декартов

пист и изображен на рисунке 3. 12. В декартовой системе координат декартов лист задается уравнением:

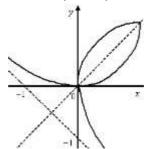


Рисунок 3. 12 – Декартов лист

Тема 9 Векторные функции

1 Найти годографы вектор функций:

a)
$$\vec{r} = (2t-1)\vec{i} + (-3t+2)\vec{j} + 4t\vec{k}$$
, $t \in \square$;

6)
$$\vec{r} = \sqrt{1 - t^2} \vec{i} + \sqrt{1 + t^2} \vec{j}, t \in [0;1];$$

B)
$$\vec{r} = (2t-1)\vec{i} + (-3t+2)\vec{j} + 4t\vec{k}$$
;

$$\Gamma) \vec{r} = 4 \operatorname{ch} t \vec{i} - \vec{j} + 3 \operatorname{sh} t \vec{k}, \ t \in \square.$$

2 Дано уравнение движения $\vec{r} = 3t\,\vec{i} + \left(4t - t^2\right)\vec{j}$. Определить траекторию и скорость движения. Построить векторы скорости для моментов t=0, t=1, t=2, t=3.

3 Найти единичный касательный вектор годографа векторфункции

$$\vec{r} = (2t-1)\vec{i} + (t^2+1)\vec{j} - (t^3+2)\vec{k}$$

при t = 0.

4 Показать, что векторы

$$\vec{r} = \cos t \, \vec{i} + \sin t \, \vec{j} + \vec{k} \, \text{u} \, \vec{r}$$

перпендикулярны.

5 Для следующих кривых написать уравнение касательной плоскости и уравнение нормальной плоскости в данной точке:

a)
$$x = 4\sin^2 t$$
, $y = 4\sin t \cos t$, $z = 2\cos^2 t$, $t = \frac{\pi}{4}$;

6)
$$x = \frac{e^t \sin t}{\sqrt{2}}$$
, $y = 1$, $z = \frac{e^t \cos t}{\sqrt{2}}$, $t = 0$.

6 Найти дифференциал длины дуги кривой $x=a\cos^2t\;,\;\;y=\sqrt{a^2+b^2}\,\sin t\cos t\;,\;\;z=b\sin^2t\;.$

Примеры оформления решения 1 Найти годограф вектор-функции

$$\vec{r}(t) = \frac{1-t^2}{1+t^2}\vec{i} + \frac{2t}{1+t^2}\vec{j} + \vec{k}$$
.

 $P\,e\, w\,e\, H\, u\, e$. Параметрические уравнения годографа есть

$$x(t) = \frac{1-t^2}{1+t^2}, \ y(t) = \frac{2t}{1+t^2}, \ z(t) = 1.$$

Из первых двух уравнений исключаем параметр t:

$$x^{2} + y^{2} = \frac{(1-t^{2})^{2} + 4t^{2}}{(1+t^{2})^{2}} = 1.$$

Следовательно, годографом вектор-функции является окружность

$$x^2 + y^2 = 1$$
, $z = 1$,

из которой исключена точка (-1;0;1).

При изменении t от $-\infty$ до $+\infty$ точка M(x;y;z) на годографе движется от точки (-1;0;1) против часовой стрелки (если наблюдать из точки, расположенной выше плоскости z=1). При этом

$$\lim_{t \to +\infty} x(t) = -1, \lim_{t \to +\infty} y(t) = 0.$$

2 Вычислить $\lim_{t\to 2} \vec{r}(t)$, если $\vec{r}(t) = (3t+2)\vec{i} + (2t-1)\vec{j} + (1-t)\vec{k}$.

Решение. Согласно определению

$$\lim_{t \to 2} \vec{r}(t) = \lim_{t \to 2} (3t + 2)\vec{i} + \lim_{t \to 2} (2t - 1)\vec{j} + \lim_{t \to 2} (1 - t)\vec{k} = 8\vec{i} + 3\vec{j} + \vec{k}.$$

3 Найти единичный касательный вектор годографа векторфункции

$$\vec{r} = e^{2t} \, \vec{i} - (t+8)^{\frac{4}{3}\vec{j}}$$

при t=0.

Решение. Параметрические уравнения годографа есть

$$x(t) = e^{2t}$$
, $y(t) = -(t+8)^{\frac{4}{3}}$, $z(t) = 0$.

Найдем координаты направляющего вектора касательной к кривой (x'(t), y'(t), z'(t)):

$$(x'(t); y'(t); z'(t)) = (2e^{2t}; -\frac{4}{3}(t+8)^{\frac{1}{3}}; 0),$$

в частности в точке t = 0

$$\vec{\tau} = (x'(t); y'(t); z'(t)) \Big|_{t=0} = \left(2e^{2t}; -\frac{4}{3}(t+8)^{\frac{1}{3}}; 0\right)\Big|_{t=0} = \left(2; -\frac{8}{3}; 0\right).$$

Тогда единичный вектор годографа имеет вид

$$\vec{\tau}^0 = \frac{2}{10/3}\vec{i} - \frac{8/3}{10/3}\vec{j} + \frac{0}{10}\vec{k} = 0.6\vec{i} - 0.8\vec{j}$$
.

4 Найти производную скалярного произведения векторов

$$\vec{r_1} = 3t\,\vec{i} + 2\,\vec{j} + 5\vec{k}$$
 и $\vec{r_2} = 2\vec{i} - 3t\,\vec{j} + \vec{k}$.

 $P\ e\ m\ e\ h\ u\ e$. Согласно свойствам дифференцируемых векторных функций, имеем

$$\frac{d(\vec{r_1} \cdot \vec{r_2})}{dt} = \vec{r_1} \cdot \frac{d\vec{r_2}}{dt} + \vec{r_2} \cdot \frac{d\vec{r_1}}{dt} =$$

$$= (3t\vec{i} + 2\vec{j} + 5\vec{k}) \cdot (-3\vec{j}) + 2\vec{i} - 3t\vec{j} + \vec{k} \cdot 3\vec{i} = -6 + 6 = 0.$$

5 Дано уравнение движения $\vec{r} = 3t\,\vec{i} - 4t\,\vec{j}$. Определить траекторию и скорость движения.

Решение. Параметрические уравнения годографа есть

$$x(t) = 3t$$
, $y(t) = -4t$, $z(t) = 0$.

Из первого уравнения исключим параметр t

$$t = \frac{x}{3}$$

и подставим во второе

$$y = -4 \cdot \frac{x}{3}.$$

Отсюда уравнение траектории движения

$$4x + 3y = 0$$
, $z = 0$.

Вектор скорости движения есть

$$\frac{d\vec{r}}{dt} = \vec{v} = 3\vec{i} - 4\vec{j} .$$

6 Написать уравнения касательной и нормальной плоскости к кривой

$$\vec{r} = (t^2 - 1)\vec{i} + (t + 1)\vec{j} + t^3\vec{k}$$

в точке $M_0(0;2;1)$.

 $P\ e\ w\ e\ h\ u\ e$. Данной точке соответствует значение параметра t=1 .

Имеем

$$x'(t) = 2t$$
, $y'(t) = 1$, $z'(t) = 3t^2$.

Подставляя значение t=1, получаем

$$x'(1) = 2$$
, $y'(1) = 1$, $z'(1) = 3$.

Тогда уравнение касательной:

$$\frac{x-0}{2} = \frac{y-2}{1} = \frac{z-3}{3},$$

уравнение нормальной плоскости:

$$2(x-0)+1(y-2)+3(z-1)=0$$

или 2x + y + 3z - 5 = 0.

7 Найти скорость и ускорение материальной точки M , движущейся с постоянной угловой скоростью ω по окружности

$$x^2 + y^2 = R^2.$$

 $P\ e\ u\ e\ h\ u\ e$. Пусть M — произвольная точка окружности. Обозначим через φ угол между радиус-вектором точки M и положительным направлением оси Ox . По условию

$$\varphi = \omega t$$
,

где t — время движения.

Выразим координаты точки M как функции времени (рисунок 3. 13):

$$x = R \cos \varphi = R \cos \omega t$$
,
 $y = R \sin \varphi = R \sin \omega t$.

Следовательно, радиус-вектор точки M

$$\vec{r} = x\vec{i} + y\vec{j} = R\cos\omega t\vec{i} + R\sin\omega t\vec{j}$$

скорость $\vec{v}(t)$ движения точки M

$$\vec{v} = \vec{r}'(t) = (R\cos\omega t)'\vec{i} + (R\sin\omega t)'\vec{j} = -R\omega\sin\omega t\vec{i} + R\omega\cos\omega t\vec{j}$$

модуль скорости

$$\left| \vec{v} \right| = \sqrt{\left(-R\omega\sin\omega t \right)^2 + \left(R\omega\cos\omega t \right)^2} = \omega R.$$

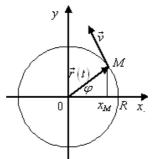


Рисунок 3. 13 – Геометрическая интерпретация задачи 7.

Скалярное произведение векторов \vec{v} и \vec{r} есть:

$$\vec{v} \cdot \vec{r} = -R^2 \cos \omega t \cdot \sin \omega t + R^2 \sin \omega t \cdot \cos \omega t = 0$$

т. е. векторы \vec{v} и \vec{r} перпендикулярны.

Отсюда следует, что вектор \vec{v} направлен по касательной к окружности, по которой движется точка M .

Найдем ускорение $\vec{a}(t)$:

$$\vec{a} = \vec{r}''(t) = \frac{d\vec{v}(t)}{dt} = -R\omega^2 \cos \omega t \, \vec{i} - R\omega^2 \sin \omega t \, \vec{j} =$$

$$= -\omega^2 \left(R \cos \omega t \, \vec{i} + R \sin \omega t \, \vec{j} \right) = -\omega^2 \, \vec{r}(t).$$

Значит, векторы \vec{a} и \vec{r} имеют противоположные направления.

Таким образом, ускорение материальной точки, движущейся с постоянной угловой скоростью по окружности, в каждый момент времени направлено к центру этой окружности.

8 К годографу винтовой линии (рисунок 3. 14)

$$\Gamma = \left\{ x = a \cos t; y = a \sin t; z = bt \middle| 0 \le t \le T \right\}$$

- а) найти уравнения касательной прямой и нормальной плоскости в точке $t_0 = \frac{\pi}{2}$;
- б) доказать, что касательная к винтовой линии образует постоянный угол с осью Oz;
 - в) записать натуральное уравнение винтовой линии;
 - г) найти дифференциал длины дуги.

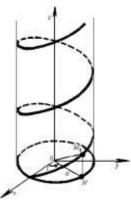


Рисунок 3. 14 — Годограф функции $\Gamma = \left\{ x = a \cos t; y = a \sin t; z = bt \,\middle|\,\, 0 \le t \le T \ \right\}$

 $P \, e \, u \, e \, h \, u \, e$. a) координаты точки касания $M_0(x_0, y_0, z_0)$ есть:

$$x_0 = a\cos\frac{\pi}{3} = \frac{a}{2}$$
, $y_0 = a\sin\frac{\pi}{3} = \frac{a\sqrt{3}}{2}$, $z_0 = b\frac{\pi}{3}$.

Координаты вектора $\vec{r}'(t_0)$:

$$x'(t_0) = -a\sin\frac{\pi}{3} = -\frac{a\sqrt{3}}{2}, \ y'(t_0) = a\cos\frac{\pi}{3} = \frac{a}{2}. \ z'(t_0) = b.$$

Тогда уравнение касательной прямой имеет вид

$$\frac{x - \frac{a}{2}}{-\frac{a\sqrt{3}}{2}} = \frac{y - \frac{a\sqrt{3}}{2}}{\frac{a}{2}} = \frac{z - \frac{b\pi}{3}}{b},$$

а уравнение нормальной плоскости

$$-\frac{a\sqrt{3}}{2}\left(x - \frac{a}{2}\right) - \frac{a}{2}\left(y - \frac{a\sqrt{3}}{2}\right) - b\left(z - \frac{b\pi}{3}\right) = 0;$$

б) вектор касательный к годографу вектора \vec{r} :

$$\frac{d\vec{r}}{dt} = (-a\sin t; a\cos t; b).$$

Тогда
$$\cos \gamma = \frac{z'(t)}{\left|\frac{d\vec{r}}{dt}\right|} = \frac{b}{\sqrt{a^2 + b^2}}$$
.

в) векторная функция $\vec{r}(t) = (a\cos t; a\sin t; bt)$ является непрерывно дифференцируемой и

$$|\vec{r}'(t)| = \sqrt{(-a\sin t)^2 + (a\cos t)^2 + b^2} = \sqrt{a^2 + b^2} > 0$$
.

Тогда $l'(t) = |\vec{r}'(t)| = \sqrt{a^2 + b^2}$. Интегрируя обе части, получим $s(t) = t\sqrt{a^2 + b^2} + C$. Из начального условия l(0) = 0, имеем C = 0. При этом длина винтовой линии равна

$$L_{\Gamma} = T\sqrt{a^2 + b^2} .$$

Следовательно,
$$t = \frac{l}{\sqrt{a^2 + b^2}}$$
.

Отсюда натуральное уравнение винтовой линии в координатной форме запишется в виде:

$$\Gamma = \left\{ x = a \cos \frac{l}{\sqrt{a^2 + b^2}}; y = a \sin \frac{l}{\sqrt{a^2 + b^2}}; z = b \frac{l}{\sqrt{a^2 + b^2}} \right\},$$

где $0 \le l \le T\sqrt{a^2 + b^2}$.

г) дифференциал длины дуги равен

$$dl = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt.$$

Для винтовой линии имеем

$$dl = \sqrt{(-a\sin t)^2 + (a\cos t)^2 + b^2}dt = \sqrt{a^2 + b^2}dt.$$

Тема 10 Кривизна кривой

1 Вычислить кривизну данных кривых в указанных точках:

a)
$$y = x^2$$
, $M_0(0;0)$, $M_1(1;1)$;

6)
$$x^2 - xy + y^2 = 1$$
, $M(1;1)$;

в)
$$x = t^2$$
, $y = t - \frac{1}{3}t^3$ при $t = 1$;

$$\Gamma$$
) $r = a(1 - \cos\varphi)$, $\varphi = \frac{\pi}{4}$.

2 Найти радиусы кривизны кривых:

a)
$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$
;

B)
$$x = a(t - \sin t), y = a(1 - \cos t);$$

6)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
; r $r^2 = a^2 \cos 2\varphi$.

$$r^2 = a^2 \cos 2\varphi$$

3 Вычислить координаты центров кривизны кривых в указанных точках:

a)
$$y = \frac{a^3}{a^2 + x^2}$$
, $M(0; a)$; 6) $y = x e^x$, $M(-1; -\frac{1}{e})$.

4 Составить уравнения эволют кривых:

a)
$$y = x^3$$
;

$$6) x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}};$$

B)
$$x = t \sin t + \cos t$$
, $y = t \cos t - \sin t$.

Примеры оформления решения

1 Вычислить кривизну кривой $y = \ln x$ в точке $x_0 = 1$.

 $Pe\, we\, ue\, ue\,$. Находим $y'=\frac{1}{r}$, $y''=-\frac{1}{r^2}$. Тогда кривизна кривой $y = \ln x$ в любой ее точке M с абсциссой x есть

$$K = \frac{\left| -\frac{1}{x^2} \right|}{\left(1 + \frac{1}{x^2} \right)^{3/2}} = \frac{|x|}{\left(1 + x^2 \right)^{3/2}}.$$

B точке $x_0 = 1$ имеем

$$K\Big|_{x_0=1} = \frac{1}{2^{3/2}} = \frac{\sqrt{2}}{4}$$
.

2 Найти кривизну в любой точке циклоиды

$$\Gamma = \{ x = a(t - \sin t), y = a(1 - \cos t), 0 \le t \le 2\pi \}$$

Решение. Имеем

$$x' = a(1-\cos t), x'' = a\sin t,$$

 $y' = a\sin t, y'' = a\cos t.$

Тогда

$$x'y'' - y'x'' = a^{2}(\cos t - \cos^{2} t - \sin^{2} t) = -a^{2}(1 - \cos t),$$

$$x'^{2} + y'^{2} = a^{2}(1 - 2\cos t + \cos^{2} t + \sin^{2} t) = 2a^{2}(1 - \cos t).$$

Подставляя в формулу для вычисления кривизны, получим

$$K = \frac{|x'y'' - x''y'|}{(x^{2} + y^{2})^{\frac{3}{2}}} = \frac{|-a^{2}(1 - \cos t)|}{(2a^{2}(1 - \cos t))^{\frac{3}{2}}} = \frac{1}{2\sqrt{2} a\sqrt{1 - \cos t}}.$$

3 Найти координаты центра кривизны кривой $x^3 + y^4 = 2$ в точке M(1;1).

Решение. Дифференцируем уравнение два раза:

$$3x^2 + 4y^3 \cdot y' = 0$$
, $6x + 12y^2 \cdot y'^2 + 4y^3 \cdot y'' = 0$.

Так как x = 1, y = 1, то из первого выражения находим, что

$$y' = \frac{-3}{4}$$
, а из второго получаем $y'' = -\frac{51}{16}$.

Подставляя в формулы для координат центра кривизны, получим

$$\xi = x - \frac{\left(1 + y^{2}\right)y}{y} = 1 - \frac{\left(1 + \frac{9}{16}\right)\left(-\frac{3}{4}\right)}{-\frac{51}{16}} = \frac{43}{68},$$

$$\eta = y + \frac{1 + y^{2}}{y} = 1 + \frac{1 + \frac{9}{16}}{-\frac{51}{16}} = \frac{26}{51}, \text{ T. e. } C\left(\frac{43}{68}; \frac{26}{51}\right).$$

4 Найти эволюту эллипса $\Gamma = \{x = a\cos t; y = b\sin t; 0 \le t \le 2\pi\}.$ *P е ш е н и е .* Имеем

$$x' = -a \sin t$$
, $y' = b \cos t$, $x'' = -a \cos t$, $y'' = -b \sin t$.

Подставляя в формулы для эволюты, получим

$$\xi = \frac{a^2 + b^2}{a} \cos^3 t$$
, $\eta = \frac{b^2 + a^2}{b} \sin^3 t$.

Данные уравнения являются параметрическими уравнениями астроиды (рисунок 3. 15).

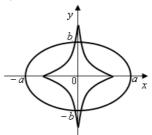


Рисунок 3. 15 – Эллипс и его эволюта

5 Составить уравнение эволюты параболы

$$y^2 = x + \frac{1}{2} .$$

Решение. Продифференцируем два раза уравнение параболы:

$$2yy' = 1, \ y' = \frac{1}{2y},$$

 $2y'^2 + 2yy'' = 0, \ y'' = -\frac{y'^2}{y} = -\frac{1}{4y^3}.$

Определяем координаты центра кривизны:

$$\xi = x - y' \frac{x'^2 + y'^2}{y'' x' - y' x''} = y^2 - \frac{1}{2} - \frac{\left(1 + \frac{1}{4y^2}\right) \cdot \frac{1}{2y}}{-\frac{1}{4v^3}} = 3y^2,$$

$$\eta = y + x' \frac{x'^2 + y'^2}{y'' x' - y' x''} = y + \frac{1 + \frac{1}{4y^2}}{-\frac{1}{4y^3}} = y - 4y^3 - y = -4y^3.$$

Получаем уравнение эволюты в параметрической форме:

$$\xi = 3v^2$$
, $\eta = -4v^3$.

Исключив параметр у, найдем уравнение эволюты в явном виде

$$\eta^2 = \frac{16}{27} \xi^3.$$

Раздел 4 Интегральное исчисление функции действительной переменной

Тема 1 Первообразная и неопределенный интеграл

1 Используя основные правила интегрирования и таблицу интегралов, вычислить следующие неопределенные интегралы:

2 Доказать, что функция $f(x) = \operatorname{sgn} x$ не имеет первообразной на любом промежутке, содержащем точку x = 0.

Примеры оформления решения

1 Используя основные свойства неопределенного интеграла, вычислить интегралы:

числить интегралы:
a)
$$\int 2^x \cdot 3^{2x} dx$$
; д) $\int (1 - \sqrt{x})^3 dx$;
6) $\int \text{tg}^2 x dx$; e) $\int \cos^2 \frac{x}{2} dx$;
B) $\int \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2 dx$; ж) $\int \frac{x^2}{1 - x^2} dx$;

r)
$$\int \frac{3x^4 + 2x^3 + 5x^2 - 7x + 8}{x^2} dx$$
 u) $\int \sqrt{1 - \sin 2x} dx$.

Решение. а) имеем:

$$\int 2^{x} \cdot 3^{2x} dx = \int \left(2 \cdot 3^{2}\right)^{x} dx = \int 18^{x} dx = \frac{18^{x}}{\ln 18} + C.$$

б) имеем:

$$\int tg^2 x dx = \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \int \frac{dx}{\cos^2 x} - \int dx = tgx - x + C.$$

в) имеем
$$\int \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2 dx = \int \left(\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{x}{2}\right) dx =$$

= $\int (1 + \sin x) dx = \int dx + \int \sin x dx = x - \cos x + C$.

г) имеем:

$$\int \frac{3x^4 + 2x^3 + 5x^2 - 7x + 8}{x^2} dx = \int \left(3x^2 - 2x + 5 - \frac{7}{x} + \frac{8}{x^2}\right) dx =$$

$$= 3\int x^2 dx - 2\int x dx + 5\int dx - 7\int \frac{dx}{x} + 8\int \frac{dx}{x^2} =$$

$$= 3 \cdot \frac{x^3}{3} - 2 \cdot \frac{x^2}{2} + 5x - 7 \cdot \ln x + 8 \cdot \frac{x^{-2+1}}{-2+1} + C =$$

$$= x^3 - x^2 + 5x - 7\ln x - \frac{8}{x} + C.$$

д) имеем:
$$\int (1 - \sqrt{x})^3 dx = \int \left(1 - 3\sqrt{x} + 3x - \sqrt{x^3}\right) dx =$$

$$= \int dx - 3 \int \sqrt{x} dx + 3 \int x dx - \int x^{\frac{3}{2}} dx = x - 3 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 3 \cdot \frac{x^{2}}{2} - \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + C =$$

$$= x - 2x\sqrt{x} + \frac{3}{2}x^2 - \frac{2}{5}x^2\sqrt{x} + C.$$

е) имеем:
$$\int \cos^2 \frac{x}{2} dx = \int \frac{1 + \cos x}{2} dx = \frac{1}{2} \int dx + \frac{1}{2} \int \cos x dx = \frac{1}{2} x + \frac{1}{2} \sin x + C$$
.

ж) имеем:
$$\int \frac{x^2}{1-x^2} dx = \int \frac{x^2-1+1}{1-x^2} dx = \int \left(-1+\frac{1}{1-x^2}\right) dx =$$
$$= -x+\frac{1}{2}\ln\left|\frac{1+x}{1-x}\right|+C.$$

и) имеем:
$$\int \sqrt{1-\sin 2x} dx = \int \sqrt{\sin^2 x - 2\sin x \cos x + \cos^2 x} dx =$$
$$= \int \sqrt{(\sin x - \cos x)^2} dx = \int |\sin x - \cos x| dx =$$
$$= (\sin x - \cos x) \cdot \operatorname{sgn}(\cos x - \sin x) + C.$$

Тема 2 Общие методы интегрирования

1 Вычислить методом замены переменной:

a)
$$\int \frac{dx}{\sin x}$$
;

и)
$$\int \frac{dx}{(1+x)\sqrt{x}}$$
;

$$\int \frac{\ln^2 x}{x} dx;$$

$$\kappa$$
) $\int \frac{\arctan x}{1+x^2} dx$;

B)
$$\int \operatorname{ctg} x dx$$
;

л)
$$\int \cosh^2 x \sinh x dx$$
;

$$\Gamma) \int \frac{x^2 dx}{\sqrt{1+x^6}};$$

$$\mathbf{M}) \int e^{\cos 2x} \sin 2x dx;$$

$$д) \int x 5^{-x^2} dx;$$

H)
$$\int \frac{\cos^5 x}{\sin^2 x} dx$$
;

e)
$$\int \frac{x^2 dx}{(1+x)^6};$$

o)
$$\int x\sqrt{x-8}\,dx$$
;

ж)
$$\int \frac{dx}{\sqrt{4-6x-3x^2}}$$
;

$$\Pi) \int \frac{x-3}{\sqrt{x^2-6x+1}} dx .$$

2 Вычислить методом интегрирования по частям:

a)
$$\int x \operatorname{arctg}^3 x \, dx$$
;

$$\Gamma) \int \sqrt{x^2 + 2x + 5} \, dx;$$

$$6) \int \frac{\arccos\sqrt{x}}{\sqrt{x}} dx;$$

д)
$$\int (x+4)\cos 3x \, dx;$$

B)
$$\int x^2 \arctan x dx$$
;

e)
$$\int \frac{\ln x}{\sqrt[3]{x}} dx$$
.

Примеры оформления решения 1 С помощью метода замены переменной найти интегралы:

a)
$$\int \frac{xdx}{\sqrt{1-x^2}}$$
;

$$6) \int \frac{x^3}{x^4 - 2} dx;$$

e)
$$\int \frac{dx}{\sin^2 x + 2\cos^2 x}$$
;

B)
$$\int \frac{dx}{x\sqrt{x^2+1}}$$
;

ж)
$$\int \frac{dx}{x\sqrt{3x+1}}$$
;

$$\Gamma) \int \frac{dx}{x \ln x \ln \ln x}$$

$$\Gamma) \int \frac{dx}{x \ln x \ln \ln x}; \qquad \qquad \text{и) } \int \frac{dx}{(1-x^2)^{\frac{3}{2}}};$$

Решение. a) имеем:

$$\int \frac{xdx}{\sqrt{1-x^2}} = \int \frac{\frac{1}{2}d(x^2)}{\sqrt{1-x^2}} = \int \frac{-\frac{1}{2}d(1-x^2)}{\sqrt{1-x^2}} =$$

$$= -\frac{1}{2}\int (1-x^2)^{-\frac{1}{2}}d(1-x^2) = \left[1-x^2=t\right] = -\frac{1}{2}\int t^{-\frac{1}{2}}dt =$$

$$= -\frac{1}{2}2t^{\frac{1}{2}} + C = -(1-x^2)^{\frac{1}{2}} + C.$$

б) имеем:
$$\int \frac{x^3}{x^4 - 2} dx = \int \frac{\frac{1}{4} d(x^4)}{(x^4)^2 - 2} = \int \frac{\frac{\sqrt{2}}{4} d\left(\frac{x^4}{\sqrt{2}}\right)}{-2\left(1 - \left(\frac{x^4}{\sqrt{2}}\right)^2\right)} =$$

$$= -\frac{\sqrt{2}}{8} \ln \left| \frac{\sqrt{2} + x^4}{\sqrt{2} - x^4} \right| + C.$$

в) имеем:
$$\int \frac{dx}{x\sqrt{x^2+1}} = \int \frac{dx}{x^2\sqrt{1+\frac{1}{x^2}}} = \int \frac{-d\left(\frac{1}{x}\right)}{\sqrt{1+\left(\frac{1}{x}\right)^2}} =$$

$$= -\ln\left|\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right| + C \ .$$

г) имеем:

$$\int \frac{dx}{x \ln x \ln \ln x} = \int \frac{d(\ln \ln x)}{\ln \ln x} = \ln \left| \ln \ln x \right| + C.$$

д) имеем:

$$\int \operatorname{tg} x dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{d(\cos x)}{\cos x} = \left[u = \cos x \right] = -\int \frac{du}{u} =$$
$$= -\ln|\cos x| + C.$$

е) имеем:

$$\int \frac{dx}{\sin^2 x + 2\cos^2 x} = \int \frac{dx}{\cos^2 x (\operatorname{tg}^2 x + 2)} = \int \frac{\sqrt{2}d\left(\frac{\operatorname{tg} x}{\sqrt{2}}\right)}{2\left(1 + \left(\frac{\operatorname{tg} x}{\sqrt{2}}\right)^2\right)} =$$

$$= \frac{1}{2}\operatorname{arctg}\left(\frac{\operatorname{tg} x}{\sqrt{2}}\right) + C.$$

ж) имеем:

$$\int \frac{dx}{x\sqrt{3x+1}} = \begin{bmatrix} \sqrt{3x+1} = u, x = \frac{u^2 - 1}{3} \\ 3x + 1 = u^2, dx = \frac{2}{3}udu \end{bmatrix} =$$

$$= \int \frac{\frac{2}{3}udu}{\frac{u^2 - 1}{3}} = 2\int \frac{du}{u^2 - 1} = \ln\left|\frac{u - 1}{u + 1}\right| + c = \ln\left|\frac{\sqrt{3x+1} - 1}{\sqrt{3x+1} + 1}\right| + C.$$

$$\text{и) имеем: } \int \frac{dx}{(1 - x^2)^{\frac{3}{2}}} = \begin{bmatrix} x = \sin t \\ dx = \cos t dt \end{bmatrix} = \int \frac{\cos t dt}{\cos^3 t} = \operatorname{tg} t + C =$$

$$= \operatorname{tg}(\arcsin x) + C = \frac{x}{\sqrt{1 + x^2}} + C.$$

2 Используя метод интегрирования по частям, вычислить следующие интегралы:

Решение. a) имеем:

$$\int \arctan x dx = \begin{bmatrix} u = \arctan x, dv = dx \\ du = \frac{dx}{1+x^2}, x = v \end{bmatrix} = x \arctan x - \int \frac{x dx}{1+x^2} = x \arctan x - \frac{1}{2} \ln |1 + x^2| + C.$$

б) имеем:

$$\int x^{2}e^{-x}dx = \begin{bmatrix} u = x^{2}, du = 2xdx \\ dv = e^{-x}dx, v = -e^{-x} \end{bmatrix} = -x^{2}e^{-x} + 2\int xe^{-x}dx =$$

$$= \begin{bmatrix} u = x, du = dx \\ dv = e^{-x}dx, v = -e^{-x} \end{bmatrix} = -x^{2}e^{-x} + 2\left(-xe^{-x} + \int e^{-x}dx\right) =$$

$$= -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + C.$$

в) имеем:

$$\int x^{2} \sin 2x dx = \begin{bmatrix} u = x^{2}, du = 2x dx \\ dv = \sin 2x dx, v = -\frac{1}{2} \cos 2x \end{bmatrix} =$$

$$= x^{2} \left(-\frac{1}{2} \cos 2x \right) + \int x \cos 2x dx = \begin{bmatrix} u = x, dv = \cos 2x dx \\ du = dx, v = -\frac{1}{2} \sin 2x \end{bmatrix} =$$

$$= -\frac{x^{2}}{2} \cos 2x + \frac{1}{2} x \sin 2x - \frac{1}{2} \int \sin 2x dx = -\frac{1}{2} x^{2} \cos 2x + \frac{1}{2} x \sin x +$$

$$+ \frac{1}{4} \cos 2x + C.$$

г) имеем:

$$\int (x-1)\ln x dx = \begin{bmatrix} u = \ln x; du = \frac{1}{x} dx; \\ dv = (x-1)dx; v = \frac{(x-1)^2}{2} \end{bmatrix} =$$

$$= \frac{(x-1)^2}{2} \ln x - \int \frac{(x-1)^2}{2} \cdot \frac{1}{x} dx = \frac{(x-1)^2}{2} \ln x - \frac{1}{2} \int \frac{x^2 - 2x + 1}{x} dx =$$

$$= \frac{(x-1)^2}{2} \ln x - \frac{1}{2} \int \left(x - 2 + \frac{1}{x}\right) dx = \frac{(x-1)^2}{2} \ln x -$$

$$-\frac{1}{2} \left(\frac{x^2}{2} - 2x + \ln x\right).$$

д) имеем:
$$\int \sin(\ln x) dx = \begin{bmatrix} u = \sin \ln x, du = \frac{1}{x} \cos \ln x dx \\ dv = dx, v = x \end{bmatrix} =$$

 $= x \sin \ln x - \int \cos \ln x \, dx = x \sin \ln x - \left(x \cos \ln x + \int \sin \ln x \, dx \right).$

Пусть $I = \int \sin \ln x dx$. Тогда

$$I = x(\sin \ln x - \cos \ln x) - I.$$

Откуда
$$I = \frac{x}{2} (\sin \ln x - \cos \ln x) + C$$
.

е) имеем:
$$\int e^{-x} \cos 2x dx = \begin{bmatrix} u = e^{-x}; du = -e^{x} dx; \\ dv = \cos 2x; v = \frac{1}{2} \sin 2x \end{bmatrix} =$$

$$= -e^{-x} \cdot \frac{1}{2} \sin 2x + \frac{1}{2} \int e^{-x} \cdot \sin 2x dx = \begin{bmatrix} u = e^{-x}; du = -e^{x} dx; \\ dv = \sin 2x; v = -\frac{1}{2} \cos 2x \end{bmatrix} =$$

$$= -\frac{e^{-x}}{2} \sin 2x + \frac{1}{2} \left(\frac{e^{-x}}{2} \cos 2x - \frac{1}{2} \int e^{-x} \cos 2x dx \right) =$$

$$= -\frac{e^{-x}}{2} \sin 2x + \frac{e^{-x}}{4} \cos 2x - \frac{1}{4} \int e^{-x} \cos 2x dx.$$
Отсюда

236

$$\int e^{-x} \cos 2x dx = -\frac{e^{-x}}{2} \sin 2x + \frac{e^{-x}}{4} \cos 2x - \frac{1}{4} \int e^{-x} \cos 2x dx.$$

Выразим искомый интеграл

$$\int e^{-x} \cos 2x dx \left(1 + \frac{1}{4} \right) = \frac{e^{-x}}{4} \left(-2\sin 2x + \cos 2x \right).$$

Тогда

$$\int e^{-x} \cos 2x dx = \frac{e^{-x} \left(-2 \sin 2x + \cos 2x\right)}{5}.$$

Тема 3 Интегрирование рациональных функций

Вычислить интегралы:

a)
$$\int \frac{dx}{x^2 + 4x - 5}$$
;

$$\mathbb{R}$$
) $\int \frac{2x+3}{(x-2)(x+5)} dx$;

6)
$$\int \frac{x^2 + x + 2}{x^3 - x^2 + x - 1} dx;$$

$$\text{u}$$
) $\int \frac{x^2 - 6x + 8}{x - 5} dx$;

B)
$$\int \frac{x^4 + 5}{x^2 + 1} dx$$
;

$$\kappa) \int \frac{dx}{\left(x^2 - 2x\right)^2};$$

$$\Gamma$$
) $\int \frac{x^2 + 4x + 4}{x(x-1)^2} dx$;

$$\pi) \int \frac{3x^2 + 2x - 1}{(x - 1)^2 (x + 2)} dx;$$

$$д) \int \frac{dx}{x(x^2+1)^2};$$

$$M) \int \frac{dx}{x^4 + 1};$$

e)
$$\int \frac{x^3 + 2x + 1}{x^3 + 1} dx$$
;

H)
$$\int \frac{xdx}{x^3+1}$$
.

Примеры оформления решения **1** Найти интегралы от рациональных функций:

a)
$$\int \frac{2x^5 + 6x^3 + 13}{x^4 + 3x^2} dx$$
;

$$\Gamma) \int \frac{2x^4 + 5x^2 - 2}{2x^3 - x - 1} dx;$$

6)
$$\int \frac{x^5 - x + 1}{x^3 + x} dx$$
;

$$\mathbf{J} \int \frac{x^4 + 1}{x^5 + x^4 - x^3 - x^2} dx.$$

B)
$$\int \frac{x+2}{x(x-1)(x+1)(x-2)} dx$$
;

Решение. а) выделим из неправильной дроби целую часть, деля числитель на знаменатель

$$\frac{2x^5 + 6x^3 + 1}{x^4 + 3x^2} = 2x + \frac{1}{x^4 + 3x^2}.$$

Разложим полученную в результате дробь на элементарные слагаемые:

$$x^4 + 3x^2 = x^2(x^2 + 3).$$

Тогда

$$\frac{1}{x^2(x^2+3)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+3} .$$

Приведем к общему знаменателю в правой части

$$\frac{1}{x^2(x^2+3)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+3} = \frac{Ax(x^2+3) + B(x^2+3) + (Cx+D)x^2}{x^2(x^2+3)}.$$

Отсюда

$$1 = Ax(x^2 + 3) + B(x^2 + 3) + (Cx + D)x^2$$

Раскроем скобки в правой части и сгруппируем:

$$1 = x^{3}(A+C) + x^{2}(B+D) + x \cdot 3A + 3B.$$

Приравниваем коэффициенты при одинаковых степенях x:

$$x^3:0=A+C$$
,

$$x^2: 0 = B + D$$
.

$$x^1:0=3A$$
,

$$x^0:1=3B$$
.

Отсюда
$$A=0$$
, $B=\frac{1}{3}$, $C=0$, $D=-\frac{1}{3}$.

Следовательно,

$$\frac{2x^5 + 6x^3 + 13}{x^4 + 3x^2} = 2x + \frac{1}{x^4 + 3x^2} = 2x + \frac{1}{3x^2} - \frac{1}{3(x^2 + 3)}.$$

Тогда

$$\int \frac{2x^5 + 6x^3 + 13}{x^4 + 3x^2} dx = \int \left(2x + \frac{1}{3x^2} - \frac{1}{3(x^2 + 3)}\right) dx =$$

$$= 2\int x dx + \frac{1}{3} \int \frac{dx}{x^2} - \frac{1}{3} \int \frac{dx}{x^2 + 3} =$$

$$= 2 \cdot \frac{x^2}{2} + \frac{1}{3} \cdot \frac{x^{-1}}{-1} + \frac{1}{3\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} + C =$$

$$= x^2 - \frac{1}{3x} + \frac{1}{3\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} + C;$$

б) подынтегральное выражение является неправильной рациональной дробью. Выделим целую часть подынтегральной функции:

$$\frac{x^5 - x + 1}{x^3 + x} = x^2 - 1 + \frac{1}{x^3 + x}$$

Разложим на элементарные последнюю дробы:

$$\frac{1}{x^3 + x} = \frac{1}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} = \frac{(A + B)x^2 + Cx + A}{x(x^2 + 1)}.$$

Методом неопределенных коэффициентов, найдем неизвестные коэффициенты A , B , C . Имеем

$$1 = (A + B)x^2 + Cx + A$$
.

Сравнивая коэффициенты при одинаковых степенях x, получаем:

$$\begin{cases} A + B = 0, \\ C = 0, \\ A = 1, \end{cases} = > \begin{cases} A = 1, \\ B = -1, \\ C = 0. \end{cases}$$

Значит,

$$\frac{1}{x^3+x} = \frac{1}{x} - \frac{x}{x^2+1}$$
.

Подставляя полученное выражение в интеграл $\int \frac{dx}{x^3 + x}$, получим

$$\int \frac{dx}{x^3 + x} = \int \frac{dx}{x(x^2 + 1)} = \int \left(\frac{1}{x} - \frac{x}{x^2 + 1}\right) dx = \int \frac{dx}{x} - \int \frac{xdx}{x^2 + 1} =$$

$$= \int \frac{dx}{x} - \frac{1}{2} \int \frac{d(x^2 + 1)}{x^2 + 1} = \ln|x| - \frac{1}{2} \ln(x^2 + 1) + C.$$

Тогда

$$\int \frac{x^5 - x + 1}{x^3 + x} dx = \int \left(x^2 - 1 + \frac{1}{x^3 + x}\right) dx =$$

$$=\frac{x^3}{3}-x+\ln|x|-\frac{1}{2}\ln(x^2+1)+C;$$

в) подынтегральное выражение является правильной рациональной дробью. Разложим ее на элементарные дроби:

$$\frac{x+2}{x(x-1)(x+1)(x-2)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} + \frac{D}{x-2} .$$

Используя метод частных значений, получим:

$$A = \frac{x+2}{(x-1)(x+1)(x-2)}\Big|_{x=0} = 1,$$

$$B = \frac{x+2}{x(x+1)(x-2)}\Big|_{x=1} = -\frac{3}{2},$$

$$C = \frac{x+2}{x(x-1)(x-2)}\Big|_{x=-1} = -\frac{1}{6},$$

$$D = \frac{x+2}{x(x-1)(x+1)}\Big|_{x=2} = \frac{2}{3}.$$

Тогда

$$\frac{x+2}{x(x-1)(x+1)(x-2)} = \frac{1}{x} - \frac{3}{2} \frac{1}{x-1} - \frac{1}{6} \frac{1}{x+1} + \frac{2}{3} \frac{1}{x-2}.$$

Подставим в исходный интеграл

$$\int \frac{x+2}{x(x-1)(x+1)(x-2)} dx = \int \left(\frac{1}{x} - \frac{3}{2} \frac{1}{x-1} - \frac{1}{6} \frac{1}{x+1} + \frac{2}{3} \frac{1}{x-2}\right) dx =$$

$$= \ln|x| - \frac{3}{2} \ln|x-1| - \frac{1}{6} \ln|x+1| + \frac{2}{3} \ln|x-2| + C =$$

$$= \ln\left|\frac{x(x-2)^{\frac{2}{3}}}{(x-1)^{\frac{3}{2}} (x+1)^{\frac{1}{6}}}\right| + C;$$

г) запишем исходный интеграл в виде:

$$\int \frac{2x^4 + 5x^2 - 2}{2x^3 - x - 1} dx = \int \left(x + \frac{6x^2 + x - 2}{2x^3 - x - 1} \right) dx =$$

$$= \frac{x^2}{2} + \int \frac{dx}{x-1} + \int \frac{4x+3}{2x^2+2x+1} dx.$$

Подынтегральное выражение в третьем слагаемом есть правильная рациональная дробь. Разложим ее на элементарные и найдем коэффициенты:

$$\frac{6x^2 + x - 2}{2x^3 - x - 1} = \frac{A}{x - 1} + \frac{Mx + N}{2x^2 + 2x + 1} = \frac{1}{x - 1} + \frac{4x + 3}{2x^2 + 2x + 1}.$$

Подставим в интеграл и вычислим его

$$\int \frac{2x^4 + 5x^2 - 2}{2x^3 - x - 1} dx = \frac{x^2}{2} + \ln|x - 1| + \int \frac{4x + 2}{2x^2 + 2x + 1} dx + \frac{1}{2x^2 + 2x + 1} dx = \frac{x^2}{2} + \ln|x - 1| + \int \frac{d(2x^2 + 2x + 1)}{2x^2 + 2x + 1} + \int \frac{dx}{\left(\sqrt{2}x + \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2}} = \frac{x^2}{2} + \ln|x - 1| + \arctan(2x + 1) + C;$$

д) поскольку

$$x^5 + x^4 - x^3 - x^2 = x^2(x+1)^2(x-1)$$
,

TO

$$\frac{x^4 + 1}{x^5 + x^4 - x^3 - x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{D}{x + 1} + \frac{E}{(x + 1)^2} =$$

$$= \frac{1}{x} - \frac{1}{x^2} + \frac{\frac{1}{2}}{x - 1} - \frac{\frac{1}{2}}{x + 1} - \frac{1}{(x + 1)^2}.$$

Тогла

$$\int \frac{x^4 + 1}{x^5 + x^4 - x^3 - x^2} dx = \ln|x| + \frac{1}{x} + \frac{1}{2} \ln|x - 1| - \frac{1}{2} \ln|x + 1| + C.$$

Тема 4 Интегрирование иррациональностей

1 Вычислить следующие интегралы:

a)
$$\int \frac{\sqrt{x}}{\sqrt[3]{x^2} + \sqrt{x}} dx;$$

$$\mathfrak{K} \int \frac{\sqrt[3]{1+\sqrt[6]{x}}}{\sqrt{x}} dx;$$

6)
$$\int \frac{x^3 dx}{\sqrt{1 + 2x - x^2}}$$
;

$$\int \frac{x^{10}dx}{\sqrt{1+x^2}};$$

B)
$$\int \frac{dx}{(x+1)\sqrt{x^2+x+1}}$$
;

$$\kappa) \int \frac{dx}{\sqrt{x} \left(1 + \sqrt[4]{x}\right)^2};$$

$$\Gamma) \int \frac{\left(1 - \sqrt[6]{x^3}\right)^3}{\sqrt[3]{x}} dx;$$

$$\pi) \int \frac{dx}{\left(x^2 - 3\right)\sqrt{4 - x^2}};$$

$$д) \int \sqrt{1-2x-x^2} dx;$$

$$M) \int \frac{\sqrt{x^2+5}}{x^2} dx;$$

e)
$$\int \sqrt{x^2 - 2x + 10} \, dx$$
;

H)
$$\int x^2 \sqrt{x^2 - 4} dx$$
.

2 Выразить через функции Si(x), li(x), $\Phi_0(x)$ и элементарные функции интегралы:

a)
$$\int \frac{e^x}{x} dx, x < 0;$$

B)
$$\int e^{-(2x^2+4x-5)} dx$$
;

6)
$$\int \frac{x \sin x - \cos x}{x^2} dx;$$

$$\Gamma$$
) $\int \Phi_0(x) dx$.

Примеры оформления решения 1 Вычислить следующие неопределенные интегралы:

a)
$$\int \frac{1+\sqrt[4]{x}}{x+\sqrt{x}} dx;$$

д)
$$\int \frac{dx}{(x-1)\sqrt{1-x^2}}$$
;

6)
$$\int \frac{dx}{\sqrt[3]{(2x+1)^3} - \sqrt{2x+1}}$$
;

e)
$$\int \sqrt{a^2 - x^2} dx;$$

$$\mathbf{B}) \int \sqrt[3]{\frac{x+1}{x-1}} \, \frac{dx}{x+1} \, ;$$

ж)
$$\int \frac{dx}{\sqrt[4]{1+x^4}}$$
;

$$\Gamma$$
) $\int \frac{1-\sqrt{1+x+x^2}}{x\sqrt{1+x+x^2}} dx$;

$$\mathrm{H}) \int \frac{dx}{x^2 \sqrt{\left(1+x^2\right)^3}} \, .$$

Решение. a) имеем:

$$\begin{split} &\int \frac{1+\sqrt[4]{x}}{x+\sqrt{x}} dx = \begin{bmatrix} x=t^4, \\ dx=4t^3 dt \end{bmatrix} = \int \frac{1+t}{t^4+t^2} 4t^3 dt = 4\int \frac{t^2+t}{t^2+1} dt = \\ &= 4\int \left(1+\frac{t-1}{t^2+1}\right) dt = 4\int \left(1+\frac{t}{t^2+1}-\frac{1}{t^2+1}\right) = 4t+2\ln\left(t^2+1\right) - \\ &-4\arctan t + C = \left[t=\sqrt[4]{x}\right] = 4\sqrt[4]{x} + 2\ln\left(\sqrt[4]{x}+1\right) - 4\arctan t \sqrt[4]{x} + C \,. \end{split}$$

$$\int \frac{dx}{\sqrt[3]{(2x+1)^3} - \sqrt{2x+1}} = \begin{bmatrix} 2x+1 = t^6, \\ x = \frac{1}{2}(t^6 - 1), \\ dx = 3t^5 dt \end{bmatrix} = \int \frac{3t^5 dt}{t^4 - t^3} = 3\int \frac{t^2 dt}{t - 1} = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \left(t + 1 - \frac{1}{t - 1}\right) dt = 3\int \frac{t^2 - 1 + 1}{t - 1} dt = 3\int \frac{t^2 - 1 + 1}$$

г) имеем:

$$\int \frac{1 - \sqrt{1 + x + x^2}}{x\sqrt{1 + x + x^2}} dx = \begin{bmatrix} t = \frac{\sqrt{x^2 + x + 1} - 1}{x} \\ x = \frac{2t - 1}{1 - t^2}, dx = 2\frac{1 - t + t^2}{(1 - t^2)^2} dt \end{bmatrix} =$$

$$= \int \frac{-2tdt}{1 - t^2} = \ln|1 - t^2| + C = \left[t = \frac{\sqrt{x^2 + x + 1} - 1}{x} \right] =$$

$$= \ln \left| 1 - \left(\frac{\sqrt{1 + x + x^2} - 1}{x} \right)^2 \right| + C;$$

д) имеем:

$$\int \frac{dx}{(x-1)\sqrt{1-x^2}} = \begin{bmatrix} x-1 = \frac{1}{t}, \\ dx = -\frac{1}{t^2} dt \end{bmatrix} = \int \frac{-\frac{1}{t^2} dt}{\frac{1}{t} \sqrt{1 - \left(\frac{1}{t} + 1\right)^2}} = \\ = -\int \frac{\sqrt{t^2} dt}{t\sqrt{-1-2t}} = -\int \frac{|t| dt}{t\sqrt{-1-2t}} = \begin{bmatrix} |x| < 1 \Rightarrow x - 1 < 0 \\ \Rightarrow t < 0 \end{bmatrix} = \\ = -\int \frac{-t dt}{t\sqrt{-1-2t}} = \int \frac{dt}{\sqrt{-1-2t}} = \int (-1-2t)^{-\frac{1}{2}} dt = \\ = -\frac{1}{2} \int (-1-2t)^{-\frac{1}{2}} d(-1-2t) = -(-1-2t)^{\frac{1}{2}} + C = \left[t = \frac{1}{x-1}\right] = \\ = -\left(-1-2\frac{1}{x-1}\right)^{\frac{1}{2}} + C = C - \sqrt{\frac{1+x}{1-x}};$$

е) имеем

$$\int \sqrt{a^2 - x^2} dx = \begin{bmatrix} x = a \cos t; \\ dx = -a \sin t dt \end{bmatrix} = \int \sqrt{a^2 - a^2 \cos^2 t} (-a) \sin t dt =$$

$$= -a^2 \int \sqrt{1 - \cos^2 t} \sin t dt = -a^2 \int \sin^2 t dt = \frac{-a^2}{2} \int (1 - \cos 2t) dt =$$

$$= -\frac{a^2}{2} \left(t - \frac{1}{2} \sin 2t \right) + C = \left[t = \arccos \frac{x}{a} \right] =$$

$$= -\frac{a^2}{2} \left(\arccos \frac{x}{a} - \frac{1}{4} \sin \left(\arccos \frac{x}{a} \right) \cos \left(\arccos \frac{x}{a} \right) \right) + C =$$

$$= -\frac{a^2}{2} \arccos \frac{x}{a} + \frac{a^2 x}{8a} \sqrt{1 - \left(\frac{x}{a} \right)^2} + C =$$

$$= -\frac{a^2}{2} \arccos \frac{x}{a} + \frac{x}{8} \sqrt{a^2 - x^2} + C ;$$

ж) имеем:
$$\int \frac{dx}{\sqrt[4]{1+x^4}} = \begin{bmatrix} a=b=1, m=0, n=4, p=-\frac{1}{4} \\ 1+x^{-4}=t^4, dx=-t^3(t^4-1)^{-\frac{5}{4}}dt \end{bmatrix} = \\ = -\int \frac{t^2 dt}{t^4-1} = -\frac{1}{2} \left(\int \frac{dt}{t^2-1} + \int \frac{dt}{t^2+1} \right) = \frac{1}{4} \ln \left| \frac{1+t}{1-t} \right| - \frac{1}{2} \arctan t + C ;$$
и) имеем:
$$\int \frac{dx}{x^2 \sqrt{(1+x^2)^3}} = \begin{bmatrix} a=b=1; p=-\frac{3}{2} \not\in \mathbf{Z}; m=-2; n=2; \\ \frac{m+1}{n} = -\frac{1}{2} \not\in \mathbf{Z}; \frac{m+1}{n} + p=-2 \in \mathbf{Z}; \\ t^2=x^{-2}+1; x=(t^2-1)^{\frac{1}{2}}; dx=-\frac{1}{2}(t^2-1)^{-\frac{3}{2}} 2t dt \end{bmatrix} = \begin{bmatrix} a=b=1, m=0, n=4, p=-\frac{1}{4} \\ 1+x^4-1+\frac{1}{4} \end{bmatrix}$$

$$= -\int \left(t^2 - 1\right)\left(1 + \frac{1}{t^2 - 1}\right)^{-\frac{3}{2}} \left(t^2 - 1\right)^{-\frac{3}{2}} t dt = -\int \frac{t^2 - 1}{t^2} dt = -\int dt + \int t^{-2} dt =$$

$$= -t - \frac{1}{t} + c = \left[t = \sqrt{1 + \frac{1}{x^2}}\right] = -\sqrt{1 + \frac{1}{x^2}} - \frac{1}{\sqrt{1 + \frac{1}{x^2}}} + C.$$

2 Выразить через функции Si(x), li(x) и элементарные функции интегралы:

a)
$$\int \frac{dx}{\ln^2 x}$$
, $x < 1$; 6) $\int Si(x) dx$.

Решение. а) имеем:

$$\int \frac{dx}{\ln^2 x} = \int \frac{x dx}{x \ln^2 x} = \begin{bmatrix} u = x, dv = \frac{dx}{x \ln^2 x}, \\ du = dx, v = \int \frac{dx}{x \ln^2 x} = -\frac{1}{\ln x} \end{bmatrix} =$$

$$= -\frac{x}{\ln x} + \int \frac{dx}{\ln x} = -\frac{x}{\ln x} + li(x) + C;$$

б) имеем:

$$\int Si(x) dx = \begin{bmatrix} u = Si(x), dv = dx, \\ du = d\left(Si(x)\right) = d\left(\int \frac{\sin x}{x} dx\right) = \frac{\sin x}{x} dx, \\ v = x \end{bmatrix} = xSi(x) - \int \sin x dx = xSi(x) + \cos x + C.$$

Тема 5 Интегрирование трансцендентных функций 1 Найти интегралы:

a)
$$\int \sin 3x \cos 5x dx$$
;

$$M$$
) $\int \frac{\sin x dx}{1-\sin x}$;

$$6) \int \cos \frac{x}{6} \cos \frac{5x}{6} dx;$$

$$H) \int \sin^4 x \cos^3 x dx;$$

B)
$$\int \sin x \cos^7 x dx$$
;

o)
$$\int \frac{dx}{2+3\sin x+2\cos x}$$
;

$$\Gamma) \int \frac{dx}{9 + 4\cos x};$$

$$π$$
) $\int tg^5 x dx$;

p)
$$\int \frac{dx}{\sin x \cos^5 x}$$
;

e)
$$\int \cosh^2 x \sinh^2 x \, dx$$
;

c)
$$\int \cosh^2 x \sinh x dx$$
;

ж)
$$\int sh^3 x dx$$
;

T)
$$\int x \cosh 2x \, dx$$
;

и)
$$\int \cosh 5x \sinh x \, dx$$
;

y)
$$\int \frac{e^{2x}dx}{\sqrt{e^x+1}}$$
;

$$K) \int \frac{e^{2x} dx}{5 + e^x};$$

$$\Phi) \int \cos^3 x \sin^2 x dx;$$

$$\pi) \int \sin^5 x \sqrt[3]{\cos x} dx ;$$

x)
$$\int \sqrt{ \ln x} dx$$
.

Примеры оформления решения Найти интегралы:

a)
$$\int \frac{dx}{4\sin x + 3\cos x + 5}$$
;

e)
$$\int \sin 2x \cdot \cos 5x dx;$$

6)
$$\int \frac{\sin x - \sin^3 x}{\cos 2x} dx$$

$$\text{w.) } \int \sin 7x \cdot \sin 5x dx ;$$

$$\text{v.) } \int \frac{e^{3x} dx}{e^{2x} + 1} ;$$

 $Pe\, w\, e\, h\, u\, e$. а) подынтегральная функция рационально зависит от $\sin x$ и $\cos x$. Применяя универсальную тригонометрическую подстановку $t=\mathrm{tg}\left(\frac{x}{2}\right)$, получим:

$$\int \frac{dx}{4\sin x + 3\cos x + 5} = \int \frac{\frac{2dt}{1+t^2}}{4 \cdot \frac{2t}{1+t^2} + 3 \cdot \frac{1-t^2}{1+t^2} + 5} =$$

$$= 2\int \frac{dx}{2t^2 + 8t + 8} = \int \frac{d(t+2)}{(t+2)^2} = -\frac{1}{t+2} + c = \left[tg \frac{x}{2} = t \right] =$$

$$= -\frac{1}{tg \frac{x}{2} + 2} + C;$$

б) подынтегральная функция является нечетной относительно $\sin x$. Поэтому применяем подстановку $\cos x = t$. Тогда получим

$$\int \frac{\sin x - \sin^3 x}{\cos 2x} dx = \begin{bmatrix} t = \cos x, & \sin^2 x = 1 - t^2, \\ \cos 2x = 2\cos^2 x - 1 = 2t^2 - 1, \\ dt = -\sin x dx \Rightarrow dx = -\frac{1}{\sqrt{1 - \cos^2 x}} dt = -\frac{1}{\sqrt{1 - t^2}} dt \end{bmatrix}$$

$$= \int \frac{\sqrt{1-t^2} - \left(\sqrt{1-t^2}\right)^3}{2t^2 - 1} \left(-\frac{1}{\sqrt{1-t^2}}\right) dt = \int \frac{t^2 - 2}{2t^2 - 1} dt = \frac{1}{2} \int \frac{2t^2 - 4}{2t^2 - 1} dt =$$

$$= \frac{1}{2} \int dt - \frac{3}{2} \int \frac{dt}{2t^2 - 1} = \frac{t}{2} - \frac{3}{2\sqrt{2}} \int \frac{d(2\sqrt{2}t)}{(2\sqrt{2}t)^2 - 1} = \frac{t}{2} - \frac{3}{2\sqrt{2}} \ln \left| \frac{\sqrt{2}t - 1}{\sqrt{2}t + 1} \right| + C =$$

$$= \left[t = \cos x\right] = \frac{\cos x}{2} - \frac{3}{2\sqrt{2}} \ln \left| \frac{\sqrt{2}\cos x - 1}{\sqrt{2}\cos x + 1} \right| + C;$$

в) имеем:
$$\int \cos^2 x \sin x dx = -\int \cos^2 x d(\cos x) = -\frac{\cos^3 x}{3} + C$$
;

г) имеем:

$$\int \cos^2 x \sin^2 x dx = \frac{1}{4} \int \sin^2 2x dx = \frac{1}{8} \int (1 - \cos 4x) dx =$$

$$= \frac{1}{8} \int dx + \frac{1}{8} \int \cos 4x dx = \frac{1}{8} x + \frac{1}{32} \sin 4x + C;$$

д) имеем:

$$\int tg^2 x dx = \begin{bmatrix} tg \ x = t; \\ x = arctg \ t; \\ dx = \frac{dt}{1 + t^2} \end{bmatrix} = \int \frac{t^2 dt}{1 + t^2} = \int \frac{t^2 + 1 - 1}{1 + t^2} dt = \int dt - \int \frac{1}{1 + t^2} dt = \int dt - \int$$

= t + arctg t + C = [t = tg x] = tg x + arctg(tg x) + C = tg x + x + C;e) имеем:

$$\int \sin 2x \cdot \cos 5x dx = \frac{1}{2} \int (\sin 7x + \sin(-3x)) dx =$$

$$= \frac{1}{2} \int \sin 7x dx - \frac{1}{2} \int \sin 3x dx = -\frac{1}{14} \cos 7x + \frac{1}{6} \cos 3x + C;$$

ж) имеем:

$$\int \sin 7x \sin 5x dx = \left[\sin 5x \sin 7x = \frac{1}{2} (\cos 2x - \cos 12x) \right] =$$

$$= \frac{1}{2} \int (\cos 2x - \cos 12x) dx = \frac{1}{2} \left(\frac{\sin 2x}{2} - \frac{\sin 12x}{12} \right) + C =$$

$$= \frac{1}{4} \sin 2x - \frac{1}{24} \sin 12x + C ;$$

и) имеем:
$$\int \frac{e^{3x} dx}{e^{2x} + 1} = \begin{bmatrix} t = e^x, \\ x = \ln t, dx = \frac{dt}{t} \end{bmatrix} = \int \frac{t^3 \cdot \frac{dt}{t}}{t^2 + 1} = \int \frac{t^2 dt}{t^2 + 1} = \int \frac{t^2 + 1 - 1}{t^2 + 1} dt = \int \frac{t^2 + 1}{t^2 + 1}$$

Тема 6 Определенный интеграл и формула Ньютона-Лейбница

1 Вычислить по определению интегралы:

a)
$$\int_{0}^{5} (1+x)dx$$
; 6) $\int_{0}^{\frac{\pi}{2}} \cos x dx$

2 Определить знаки интегралов, не вычисляя их:

a)
$$\int_{-2}^{1} \sqrt[3]{x} dx$$
; 6) $\int_{-1}^{1} x^3 e^x dx$.

3 Не вычисляя интегралов, выяснить, какой из интегралов

a)
$$\int_{0}^{1} e^{-x} \cos^{2} x \, dx$$
 is $\int_{0}^{1} e^{-x^{2}} \cos^{2} x \, dx$; 6) $\int_{1}^{2} \frac{dx}{x}$ is $\int_{1}^{2} \frac{dx}{\sqrt{1+x^{2}}}$.

4 Найти среднее значение функции на данном отрезке:

a)
$$x^3$$
, [0;1];

6)
$$\cos x$$
, $\left[0; \frac{\pi}{2}\right]$.

5 Оценить интегралы:

a)
$$\int_{-1}^{1} \sqrt{8 + x^3} dx$$
;

6)
$$\int_{0}^{2\pi} \frac{dx}{\sqrt{5+2\sin x}}$$
.

6 Доказать, что если функция f(x) четная на [-a;a], то

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$$

7 Найти производные следующих функций:

a)
$$\int_{x}^{0} \frac{dt}{\sqrt{1+t^3}} dt;$$

$$\text{6) } \int_{1}^{\sqrt{x}} \sin(t^2) dt.$$

8 Используя формулу Ньютона-Лейбница, вычислить интегралы:

a)
$$\int_{-2}^{2} x^3 dx$$
;

$$\Gamma) \int_{\pi}^{\pi} \sin x \, dx$$

$$6) \int_{1}^{2} e^{-x} dx;$$

$$\int_{2}^{5} \frac{dx}{3x+1};$$

B)
$$\int_{0}^{1} \frac{x^2 dx}{1 + x^6}$$
;

e)
$$\int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx$$
.

9 Вычислить интегралы с помощью замены переменной:

a)
$$\int_{1}^{6} \frac{dx}{1 + \sqrt{3x - 2}}$$

6)
$$\int_{\ln x}^{\ln 8} \frac{dx}{\sqrt{1+e^x}}$$
;

10 Вычислить интегралы методом интегрирования по частям:

a)
$$\int_{1}^{e} \ln^2 x \, dx$$

a)
$$\int_{1}^{e} \ln^{2} x \, dx$$
; 6) $\int_{\pi}^{1} x \arcsin x \, dx$; 6) $\int_{\pi}^{\frac{\pi}{3}} \frac{x \, dx}{\cos^{2} x}$.

$$6) \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{x dx}{\cos^2 x} \, .$$

Примеры оформления решения

1 Вычислить определенный интеграл $\int_{1}^{2} x^{2} dx$, рассматривая его как предел интегральных сумм.

 $P\,e\,w\,e\,u\,u\,e\,$. Разделим отрезок интегрирования [1;2] на n равных частей длины $\Delta x = \frac{1}{n}$. Точки деления

$$x_0 = 1$$
, $x_1 = 1 + \frac{1}{n}$, $x_2 = 1 + \frac{2}{n}$, ..., $x_{n-1} = 1 + \frac{n-1}{n}$, $x_n = 2$.

В качестве точек ξ_k выберем, например, левые концы каждого частичного отрезка. Тогда

$$f(x_0) = 1$$
, $f(x_1) = \left(1 + \frac{1}{n}\right)^2$, ..., $f(x_{n-1}) = \left(1 + \frac{n-1}{n}\right)^2$.

Следовательно,

$$S_n = \frac{1}{n} \left(1 + \left(1 + \frac{1}{n} \right)^2 + \left(1 + \frac{2}{n} \right)^2 + \dots + \left(1 + \frac{n-1}{n} \right)^2 \right) =$$

$$= \frac{1}{n^3} \left(n^2 + (n+1)^2 + (n+2)^2 + \dots + (2n-1)^2 \right) = \frac{1}{n^3} \left(\sum_{k=1}^{2n-1} k^2 - \sum_{k=1}^{n-1} k^2 \right)$$

Применяя формулу суммы квадратов целых чисел

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6},$$

находим

$$S_n = \frac{1}{n^3} \left(\frac{(2n-1)2n(4n-1)}{6} - \frac{(n-1)n(2n-1)}{6} \right) = \frac{14n^2 - 9n + 1}{6n^2}.$$

Тогда

$$\int_{1}^{2} x^{2} dx = \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \frac{14n^{2} - 9n + 1}{6n^{2}} = \frac{7}{3}.$$

2 Оценить интеграл $I = \int_{0}^{1} \frac{dx}{\sqrt{1+x^4}}$.

 $Pe\, m\, e\, n\, u\, e$. При $0 \le x \le 1$ имеем $1 \le 1 + x^4 \le 2$. Тогда

$$\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{1+x^4}} \le 1$$
.

Отсюда $m = \frac{1}{\sqrt{2}}$, M = 1, b - a = 1.

Поэтому $\frac{1}{\sqrt{2}} \le I \le 1$.

3 Найти I'(x), если $I(x) = \int_{0}^{x^2} e^{-t^2} dt$.

Решение. Используя теорему 6, получим

$$I'(x) = \left(\int_{0}^{x^{2}} e^{-t^{2}} dt\right)' = e^{-(x^{2})^{2}} \cdot (x^{2})' = 2xe^{-x^{4}}.$$

4 Вычислить интегралы с помощью формулы Лейбница:

a)
$$\int_{0}^{\frac{\pi}{2}} \sin x dx;$$
B)
$$\int_{1}^{6} \frac{dx}{\sqrt{3+x}};$$
6)
$$\int_{1}^{2} \frac{dx}{x};$$
r)
$$\int_{-1}^{0} e^{-2x} dx.$$

$$B) \int_{1}^{6} \frac{dx}{\sqrt{3+x}}$$

$$6) \int_{1}^{2} \frac{dx}{x}$$

$$\Gamma) \int_{-1}^{0} e^{-2x} dx.$$

Решение. a) имеем:

$$\int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_{0}^{\frac{\pi}{2}} = -\left(\cos \frac{\pi}{2} - \cos 0\right) = 1;$$

б) имеем:

$$\int_{1}^{2} \frac{dx}{x} = \ln x \Big|_{1}^{2} = \ln 2 - \ln 1 = \ln 2 ;$$

в) имеем:

$$\int_{1}^{6} \frac{dx}{\sqrt{3+x}} = \int_{1}^{6} (3+x)^{-1/2} d(3+x) = 2\sqrt{3+x} \Big|_{1}^{6} = 2(\sqrt{9} - \sqrt{4}) = 2;$$

г) имеем:

$$\int_{-1}^{0} e^{-2x} dx = -\frac{1}{2} e^{-2x} \Big|_{-1}^{0} = -\frac{1}{2} \left(e^{0} - e^{2} \right) = \frac{e^{2} - 1}{2}.$$

5 Вычислить интеграл $\int_{0}^{1} \sqrt{1-x^2} dx$.

Решение. Имеем:

$$\int_{0}^{1} \sqrt{1-x^{2}} dx = \begin{bmatrix} x = \sin t, \\ dx = \cos t dt, \\ x = 0 \Rightarrow t = 0, \\ x = 1 \Rightarrow t = \frac{\pi}{2} \end{bmatrix} = \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin^{2} t} \cos t dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{1}{2} \left(t + \frac{1}{2} \sin 2t \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

6 Вычислить интеграл $\int_{1}^{e} \ln x dx$.

Решение. Имеем

$$\int_{1}^{e} \ln x dx = \left[u = \ln x; \ du = \frac{1}{x} dx; \\ dv = dx; \ v = x \right] = x \ln x \Big|_{1}^{e} - \int_{1}^{e} \frac{1}{x} x dx = e - \int_{1}^{e} dx = e - x \Big|_{1}^{e} = 1.$$

$\it Tema~7~ \Gamma eomempuчeckue~ npuложения~ onpedeленного~ uнmerpaлa$

1 Найти площадь фигуры, ограниченной кривой $y = \ln x$ и прямыми x = e , $x = e^2$, y = 0 .

2 Найти площадь фигуры, ограниченной параболой $y^2 = 4x$ и прямой x = 4y .

3 Найти площадь фигуры, ограниченной параболой $y = x^2 + 2x$ и прямой y = x + 2.

4 Найти площадь фигуры, ограниченной кривыми $y = \frac{27}{x^2 + 9}$ и

$$y = \frac{x^2}{6} \, .$$

5 Найти площадь фигуры, ограниченной астроидой

$$x = a\cos^3 t$$
, $y = a\sin^3 t$.

- **6** Найти площадь петли кривой $x = a(t^2 + 1)$, $y = b(t^3 3t)$.
- 7 Найти площадь одного лепестка кривой $r=a\sin2\varphi$.
- **8** Найти площадь фигуры, ограниченной двумя последовательными витками логарифмической спирали $r=e^{\varphi}$, начиная с $\varphi=0$.
 - **9** Найти длину параболы $y = x^2$ от x = 0 до x = 1.
 - 10 Найти длину одной арки циклоиды

$$x = a(t - \sin t), y = a(1 - \cos t), 0 \le t \le 2\pi$$
.

- **11** Найти длину петли кривой $x = t^2$, $y = t \left(\frac{1}{3} t^2 \right)$.
- **12** Найти длину кардиоиды $r = 2(1 \cos \varphi)$.
- **13** Вычислить площадь поверхности, образованной вращением вокруг полярной оси кардиоиды $r = 2a(1 + \cos \varphi)$.
- **14** Найти площадь поверхности, образованной вращением вокруг оси Ox дуги цепной линии $y = \frac{1}{2} \operatorname{ch} 2x$, $0 \le x \le 3$.
- **15** Найти объем тела, образованного вращением вокруг оси Oy фигуры, ограниченной кривой $x = \cos t$, $y = \sin 2t$, $0 \le t \le \frac{\pi}{2}$, и осью Ox.
- **16** Найти объем тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной кривыми $2y^2 = x^3$, x = 4.

Примеры оформления решения

1 Вычислить площадь фигуры, ограниченной аркой синусоиды $y = \sin x$ и прямой y = 0 (рисунок 7. 1).

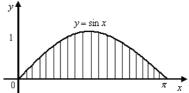
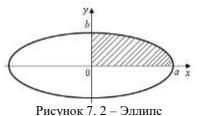


Рисунок 7. 1 – Фигура, ограниченная линиями $y = \sin x$, y = 0

Решение. Находим:

$$S = \int_{0}^{\pi} \sin x dx = -\cos x \Big|_{0}^{\pi} = -(\cos \pi - \cos 0) = 2.$$

2 Вычислить площадь эллипса $x = a \cos t$, $y = b \sin t$, где $0 \le t \le 2\pi$ (рисунок 7. 2).



 $P\,e\,w\,e\,h\,u\,e$. Оси координат совпадают с осями симметрии данного эллипса и поэтому делят его на четыре одинаковые части. Следовательно, $S=4S_1$, где S_1 — площадь части эллипса, расположенная в первом квадранте. Тогда

$$S = 4S_1 = 4\int_0^a y dx = \begin{bmatrix} x = a\cos t, & y = b\sin t, \\ dx = -a\sin t dt, \\ x = 0 \implies t = \frac{\pi}{2}, \\ x = a \implies t = 0. \end{bmatrix} = -4ab\int_{\frac{\pi}{2}}^0 \sin^2 t dt = \frac{\pi}{2}$$

$$= -2ab \int_{0}^{\frac{\pi}{2}} (1 - \cos 2t) dt = 2ab \left(t - \frac{1}{2} \sin 2t \right) \Big|_{0}^{\frac{\pi}{2}} = \pi ab.$$

3 Вычислить площадь криволинейного сектора, ограниченного кардиоидой $r = a(1 + \cos \varphi)$, где $0 \le \varphi \le 2\pi$.

Решение. Получим:

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi) d\varphi = \frac{a^{2}}{2} \int_{0}^{2\pi} (1 + \cos\varphi)^{2} d\varphi =$$

$$= \frac{a^{2}}{2} \left(\int_{0}^{2\pi} 1 d\varphi + 2 \int_{0}^{2\pi} \cos\varphi d\varphi + + \int_{0}^{2\pi} \cos^{2}\varphi d\varphi \right) =$$

$$= \frac{a^{2}}{2} \left(\varphi \Big|_{0}^{2\pi} + 2\cos\varphi \Big|_{0}^{2\pi} + \frac{1}{2} \left(1 + \frac{1}{2}\sin 2\pi \right) \Big|_{0}^{2\pi} \right) = \frac{3}{2} \pi a^{2}.$$

4 Вычислить длину дуги полукубической параболы $y = x^{\overline{2}}$ если $0 \le x \le 5$.

Решение. Имеем:

$$l = \int_{0}^{5} \sqrt{1 + \left(\frac{3}{2}x^{\frac{1}{2}}\right)^{2}} dx = \frac{8}{27} \left(1 + \frac{9x}{4}\right)^{\frac{3}{2}} \bigg|_{0}^{5} = \frac{235}{27}.$$

5 Вычислить длину астроиды $x = a \cos^3 t$, $y = a \sin^3 t$, если $0 \le t \le 2\pi$.

Peuehue. В силу симметричности астроиды относительно осей получим:

$$l = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{(x'_{t})^{2} + (y'_{t})^{2}} dt = \begin{bmatrix} x' = -3a\cos^{2}t\sin t, \\ y' = 3a\cos t\sin^{2}t \end{bmatrix} =$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \sqrt{9a^{2}\cos^{4}t\sin^{2}t + 9a^{2}\sin^{4}t\cos^{2}t} dt = 6a \int_{0}^{\frac{\pi}{2}} \sin 2t dt = 6a.$$

6 Вычислить длину первого витка спирали Архимеда $r = a \phi$.

 $P\,e\, m\,e\, n\,u\,e$. Первый виток спирали образуется при изменении полярного угла $0 \le \varphi \le 2\pi$. Поэтому

$$l = \int_{0}^{2\pi} \sqrt{a^{2} \varphi^{2} + a^{2}} d\varphi = a \int_{0}^{2\pi} \sqrt{\varphi^{2} + 1} d\varphi =$$
$$= a \left(\pi \sqrt{4\pi^{2} + 1} + \frac{1}{2} \ln \left(2\pi + \sqrt{4\pi^{2} + 1} \right) \right).$$

7 Вычислить площадь S поверхности, полученной вращением одной арки циклоиды $x=a(t-\sin t)$, $y=a(1-\cos t)$, $0 \le t \le 2\pi$, вокруг оси Ox.

Решение. Имеем:

$$S = 2\pi \int_{0}^{2\pi} a(1 - \cos t) \sqrt{(a \sin t)^{2} + (a(1 - \cos t))^{2}} dt =$$

$$= 2\sqrt{2}\pi a^{2} \int_{0}^{2\pi} (1 - \cos t)^{\frac{3}{2}} dt = \frac{64}{3}\pi a^{2}.$$

8 Вычислить объем тела, ограниченного эллипсоидом

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

 $Pe\,ue\,u\,e\,u\,e\,$. Пересечем эллипсоид плоскостью x=h. В сечении получим эллипс

$$\begin{cases} \frac{y^2}{b^2 \left(1 - \frac{x^2}{a^2}\right)} + \frac{z^2}{c^2 \left(1 - \frac{x^2}{a^2}\right)} = 1, \\ x = h. \end{cases}$$

Площадь поперечного сечения равна $S(x) = \pi bc \left(1 - \frac{h^2}{a^2}\right)$.

Тогда

$$V = \int_{-a}^{a} \pi bc \left(1 - \frac{h^{2}}{a^{2}} \right) dh = \pi bc \left(x - \frac{h^{2}}{3a^{2}} \right) \Big|_{-a}^{a} = \frac{4}{3} \pi abc.$$

9 Вычислить объем тела, получающегося от вращения вокруг оси одной арки синусоиды $y = \sin x$.

Решение. Имеем

$$S = \pi \int_{0}^{\pi} \sin^{2} x dx = \frac{\pi}{2} \left(\int_{0}^{\pi} dx - \int_{0}^{\pi} \cos 2x x dx \right) = \frac{\pi^{2}}{2}.$$

Тема 8 Физические приложения определенного интеграла

1 Какую работу затрачивает подъемный кран при извлечении железобетонной надолбы со дна реки глубиною в 5 м, если надолба

имеет форму правильного тетраэдра с ребром 1м, плотность железобетона 2500 кг/м^3 .

- **2** Найти работу, затраченную на выкачивание воды из сосуда, имеющего форму полуцилиндра, длина которого a, радиус r.
- 3 Водопроводная труба имеет диаметр 6 см.; один ее конец соединен с баком, в котором уровень воды на 100 см выше верхнего края трубы, а другой закрыт заслонкой. Найти полное давление на заслонку.
- **4** Найти величину давления воды на вертикальную стенку в форме полукруга, диаметр которого 6 м и находится на поверхности воды (рисунок 8. 1).

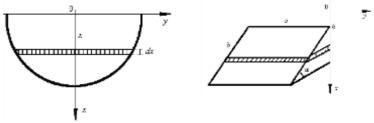


Рисунок 8. 1 – К задаче 4

Рисунок 8. 2 – К задаче 6

- **5** Найти давление бензина, находящегося в цилиндрическом баке высотою h=3,5 м и радиусом r=1,5 м, на его стенки, если плотность бензина $\rho=900$ кг/м³.
- **6** Какое давление испытывает прямоугольная пластинка длиною a и шириною b, a > b, если она наклонена к горизонту жидкости под углом α и ее большая сторона находится на глубине h (рисунок 8.2).
- 7 Найти момент инерции относительно оси Oy площади эллипса $x = a \cos t$, $y = b \sin t$.
- **8** Найти статические моменты и моменты инерции дуги астроиды $x = a \cos^3 t$, $y = a \sin^3 t$, лежащей в первой четверти.
- **9** Найти координаты центра тяжести параболического сегмента, ограниченного линиями $y = 2x x^2$, y = 0.

Примеры оформления решения

1 Найти статические моменты и моменты инерции относительно осей Ox и Oy дуги цепной линии $y = \operatorname{ch} x$ при $0 \le x \le 1$.

Решение. Имеем

$$y' = \sinh x$$
, $\sqrt{1 + y'^2} = \sqrt{1 + (\sinh x)^2} = \cosh x$.

Тогда

$$M_{x} = \int_{0}^{1} \cosh^{2} x \, dx = \frac{1}{2} \int_{0}^{1} (1 + \cosh 2x) dx = \frac{1}{2} \left(x + \frac{1}{2} \sinh x \right) \Big|_{0}^{1} = \frac{1}{4} (2 + \sinh 2),$$

$$M_{y} = \int_{0}^{1} x \cosh x \, dx = \begin{bmatrix} u = x, dv = \cosh x \, dx, \\ du = dx, v = \sinh x \end{bmatrix} = x \sinh x \Big|_{0}^{1} - \int_{0}^{1} \sinh dx = \sinh 1 - \cosh x \Big|_{0}^{1} = \sinh 1 - \cosh 1 + 1,$$

$$\begin{split} I_x &= \int\limits_0^1 \cosh^3 x \, dx = \int\limits_0^1 \left(1 + \sinh^2 x\right) \cosh x \, dx = \left(\sinh x + \frac{1}{3} \sinh^3 x\right) \bigg|_0^1 = \sinh 1 + \frac{1}{3} \sinh^3 1 \,, \\ I_y &= \int\limits_0^1 x^2 \cosh x \, dx = \left[u = x^2, dv = \cosh x \, dx, \\ du &= 2x dx, v = \sinh x\right] = x^2 \sinh x \bigg|_0^1 - 2 \int\limits_0^1 x \sinh x \, dx = \\ &= \left[u = x, dv = \sinh x \, dx, \\ du &= dx, v = \cosh x\right] = \sinh 1 - 2 \left(x \cosh x \bigg|_0^1 - \int\limits_0^1 \cosh x \, dx\right) = \end{split}$$

= sh1 - 2ch1 + +2sh1 = 3sh1 - 2ch1. 2 Найти координаты центра масс дуги окружности

$$x = a \cos t$$
, $y = a \sin t$, $0 \le t \le \frac{\pi}{2}$.

Решение. Масса дуги окружности в первой четверти есть

$$M=\frac{\pi a}{2}$$
.

Имеем

$$x' = -a \sin t$$
, $y' = a \cos t$,
 $\sqrt{x^2 + y^2} = \sqrt{a^2 \sin^2 t + a^2 \cos^2 t} = a$.

Тогда

$$M_{x} = a^{2} \int_{0}^{\frac{\pi}{2}} \cos t \, dt = a^{2} \sin t \Big|_{0}^{\frac{\pi}{2}} = a^{2} \,,$$

$$M_{y} = a^{2} \int_{0}^{\frac{\pi}{2}} \sin t \, dt = -a^{2} \cos t \Big|_{0}^{\frac{\pi}{2}} = a^{2} \,.$$

Следовательно,

$$x_C = \frac{M_y}{M} = \frac{a^2}{\frac{\pi a}{2}} = \frac{2a}{\pi}, \qquad y_C = \frac{M_x}{M} = \frac{a^2}{\frac{\pi a}{2}} = \frac{2a}{\pi}.$$

3 Скорость прямолинейного движения тела выражается формулой $v = 2t + 3t^2$ м/с. Требуется найти путь, пройденный телом за 5 секунд от начала движения.

 $P \, e \, w \, e \, h \, u \, e$. Так как путь, пройденный телом со скоростью v(t)

за отрезок времени выражается интегралом $S=\int\limits_{t_{1}}^{t_{2}}v\left(t\right) dt$,

то имеем

$$S = \int_{0}^{5} (2t + 3t^{2}) dt = (t^{2} + t^{3}) \Big|_{0}^{5} = 150 \text{ (M)}.$$

4 Какую работу необходимо затратить, для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту h? Чему равна работа, если тело удаляется в бесконечность?

 $P \, e \, u \, e \, h \, u \, e$. Работа переменной силы f(x), действующей вдоль оси Ox на отрезке [a;b], выражается интегралом

$$A = \int_{a}^{b} f(x) dx.$$

Согласно закону всемирного тяготения сила F, действующая на тело массы m, равна

$$F=k\frac{mM}{r^2},$$

где M — масса земли, r — расстояние массы m от центра земли, k — гравитационная постоянная. Так как на поверхности Земли, т.е. при r=R, имеем F=mg, то можно записать

$$mg = k \frac{mM}{R^2}.$$

Отсюда получаем $kM=gR^2$. Тогда $F=mg\,rac{R^2}{r^2}$.

Следовательно, искомая работа равна:

$$A = \int_{R}^{R+h} F \, dr = \int_{R}^{R+h} mgR^2 \, \frac{dr}{r^2} = mgR^2 \left(-\frac{1}{r} \right) \bigg|_{R}^{R+h} = mgR \, \frac{h}{R+h} \; .$$

Отсюда при $h \to \infty$ имеем

$$\lim_{h\to\infty}A=mgR.$$

5 Вычислить кинетическую энергию однородного кругового конуса, вращающегося с угловой скоростью ω вокруг своей оси, если заданы радиус основания конуса R, высота H и плотность γ .

 $Pe\, w\, e\, h\, u\, e$. Кинетическая энергия тела, вращающегося вокруг некоторой оси с угловой скоростью ω , равна $\frac{1}{2}I\omega^2$, где I момент инерции тела относительно оси вращения. Пусть dm — элементарная масса полого цилиндра высоты h с внутренним радиусом r и толщиной стенок dr (рисунок 8.3)

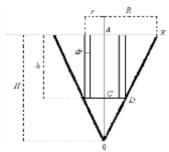


Рисунок 8. 3 – Геометрическая интерпретация примера 5

Тогда

$$dm = 2\pi rh\gamma dr$$
, $0 \le r \le R$.

Из подобия треугольников OCD и OAB имеем

$$\frac{r}{R} = \frac{H - h}{H} \, .$$

Отсюда

$$h = H\left(1 - \frac{r}{R}\right).$$

Следовательно,

$$dm = 2\pi \gamma H \left(1 - \frac{r}{R}\right) r dr,$$

и элементарный момент инерции dI равен

$$dI = dm r^2 = 2\pi \gamma H \left(1 - \frac{r}{R}\right) r^3 dr.$$

Таким образом, момент инерции всего конуса есть

$$I = \int_{0}^{R} dI = \int_{0}^{R} 2\pi \gamma H \left(1 - \frac{r}{R} \right) r^{3} dr = 2\pi \gamma H \left(\frac{R^{4}}{4} - \frac{R^{4}}{5} \right) = \frac{1}{10} \pi \gamma H R^{4},$$

и кинетическая энергия конуса равна

$$K = \frac{1}{20} \pi \gamma H R^4 \omega^4.$$

6 Найти силу давления воды на вертикальную треугольную пластину с основанием a и высотой h, погруженную в воду вершиной вниз так, что основание находится на поверхности воды.

 $P\,e\,w\,e\,h\,u\,e\,.$ Согласно закону Паскаля сила давления P жидкости с удельным весом γ на площадку S при глубине погружения H равна

$$P = \gamma H S.$$

Введем систему координат (рисунок 8. 4) Oxy и рассмотрим элементарную прямоугольную площадку, находящуюся на глубине x и имеющую основание b и высоту dx.

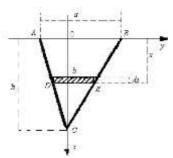


Рисунок 8. 4 – Геометрическая интерпретация примера 6

Из подобия треугольников САВ и CDE имеем

$$\frac{b}{a} = \frac{h-x}{h}$$
.

Отсюда $b = \frac{a}{h}(h-x)$.

Следовательно, (для воды $\gamma = 1$).

$$dS = b dx = \frac{a}{h} (h - x) dx,$$

$$dP = x \, dS = \frac{ax}{h} (h - x) dx$$

Таким образом, сила давления воды на всю пластину равна

$$P = \int_{0}^{h} x \, dS = \frac{a}{h} \int_{0}^{h} x (h - x) dx = \frac{a}{h} \left(\frac{h^{3}}{2} - \frac{h^{3}}{3} \right) = \frac{ah^{2}}{6}.$$

7 Вычислить работу, которую нужно затратить, чтобы растянуть пружину на 10 см, если известно, что для удаления ее на 1см необходимо приложить силу в 1 кH.

 $P\,e\, m\,e\, h\, u\, e\, .$ Согласно закону Гука, сила F , растягивающая пружину пропорциональна ее растяжению

$$F = k x$$
,

где k — коэффициент пропорциональности, x — растяжение пружины (в метрах).

Так как по условию при $x=0{,}01\,$ м сила $F=1\,$ кH, то из равенства

$$1 = 0.01 k$$
,

получаем

$$k = 100$$
, $F = 100x$.

Следовательно, искомая работа равна

$$A = \int_{0}^{0.1} 100 \, x \, dx = 50 \, x^2 \Big|_{0}^{0.1} = 0,5 \text{ кДж.}$$

Тема 9 Несобственные интегралы

1 Вычислить несобственные интегралы (или установить их расходимость):

a)
$$\int_{e}^{+\infty} \frac{dx}{x \ln^3 x};$$

$$\exists \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 6x + 11};$$

$$6) \int_{0}^{+\infty} e^{-2x} \cos x \, dx;$$

e)
$$\int_{0}^{+\infty} \frac{x \, dx}{x^2 + 4};$$

$$\mathrm{B)} \int\limits_{0}^{+\infty} \frac{dx}{\left(x+2\right)^6} \, ;$$

$$\mathfrak{K})\int\limits_{0}^{+\infty}x\,e^{-x^{2}}\,dx\,;$$

$$\Gamma) \int_{0}^{+\infty} \sin 2x \, dx;$$

$$\mathrm{U})\int\limits_{1}^{+\infty}\frac{dx}{\sqrt{x^2+1}}.$$

2 Исследовать на сходимость интегралы:

a)
$$\int_{1}^{+\infty} \frac{dx}{5x^4 + 2x^2 + 3}$$
;

B)
$$\int_{1}^{+\infty} \frac{\sqrt{x^3} + \sqrt{x^2 + 1}}{x^3 + 3x + 1} dx$$
;

$$\int_{1}^{+\infty} \frac{\sin\frac{1}{x}}{2+x\sqrt{x}} dx;$$

$$\Gamma) \int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^{11}}}.$$

3 Вычислить площадь бесконечной трапеции, ограниченной указанными линиями:

a)
$$y = xe^{-x}$$
, $(x \ge 0)$, $y = 0$;

6)
$$y = \frac{1}{x^2 + 9}$$
, $y = 0$.

4 Вычислить несобственные интегралы (или установить их расходимость):

a)
$$\int_{\frac{1}{3}}^{\frac{2}{3}} \frac{dx}{x\sqrt{9x^2 - 1}}$$
;

B)
$$\int_{0}^{2} \frac{x^{3} dx}{\sqrt{4-x^{2}}}$$
;

$$6) \int_{1}^{e^{2}} \frac{dx}{x\sqrt{\ln x}};$$

$$\Gamma) \int_{-8}^{8} \frac{dx}{\sqrt[3]{x}}.$$

a)
$$\int_{0}^{1} \frac{dx}{\operatorname{tg} x - x};$$

д)
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx$$
;

$$6) \int_{0}^{1} \frac{\cos \frac{1}{x}}{\sqrt{x}} dx;$$

e)
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x dx}{\cos x};$$

B)
$$\int_{0}^{1} \ln x \, dx$$
;

ж)
$$\int_{0}^{4} \frac{dx}{\sqrt{x}}$$
;

$$\Gamma$$
) $\int_{0}^{0.4} \frac{dx}{\sqrt{2-5x}}$;

$$\text{и)} \int_{0}^{\frac{1}{2}} \frac{\cos^3(\ln x)}{x \ln x} dx.$$

a)
$$v.p. \int_{-\infty}^{+\infty} \sin x dx$$
;

6)
$$v.p. \int_{-\infty}^{+\infty} \operatorname{arctg} x dx$$

a)
$$v.p. \int_{-\infty}^{+\infty} \sin x dx$$
; 6) $v.p. \int_{-\infty}^{+\infty} \operatorname{arctg} x dx$; B) $v.p. \int_{-\infty}^{+\infty} \frac{13+x}{17+x^2} dx$.

Примеры оформления решения 1 Вычислить интегралы

a)
$$\int_{0}^{+\infty} \frac{dx}{1+x^2};$$
 6)
$$\int_{1}^{+\infty} \frac{dx}{x^p};$$
 B)
$$\int_{0}^{1} \frac{dx}{x^p}.$$

$$6) \int_{1}^{+\infty} \frac{dx}{x^{p}};$$

$$B) \int_{0}^{1} \frac{dx}{x^{p}}$$

Решение. a) имеем:

$$\int_{0}^{+\infty} \frac{dx}{1+x^2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{1+x^2} = \lim_{b \to +\infty} \operatorname{arctg} x \Big|_{0}^{b} = \lim_{b \to +\infty} \left(\operatorname{arctg} b - \operatorname{arctg} 0 \right) =$$

$$= \lim_{b \to +\infty} \operatorname{arctg} b = \frac{\pi}{2};$$

б) при p = 1 имеем:

$$\int_{1}^{+\infty} \frac{dx}{x} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x} = \lim_{b \to +\infty} \ln x \Big|_{1}^{b} = \lim_{b \to +\infty} (\ln b - \ln 1) = +\infty.$$

При p ≠ 1 получим:

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{b \to +\infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to +\infty} \frac{x^{-p+1}}{-p+1} \bigg|_{1}^{b} = \begin{cases} \frac{1}{1-p}, \text{ если } p > 1, \\ +\infty, \text{ если } p < 1. \end{cases}$$

Значит, интеграл $\int\limits_{1}^{+\infty} \frac{dx}{x^p}$ сходится при p>1 и расходится при $p\leq 1$;

в) при p = 1 имеем:

$$\int_{0}^{1} \frac{dx}{x} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \frac{dx}{x} = \lim_{\varepsilon \to 0} \ln x \Big|_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} (\ln 1 - \ln \varepsilon) = +\infty.$$

При $p \neq 1$ имеем:

$$\int_{0}^{1} \frac{dx}{x^{p}} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} x^{-p} dx = \lim_{\varepsilon \to 0} \frac{x^{-p+1}}{-p+1} \bigg|_{\varepsilon}^{1} = \begin{cases} \frac{1}{1-p}, \text{ если } p < 1, \\ +\infty, \text{ если } p > 1. \end{cases}$$

Значит, интеграл $\int_{0}^{1} \frac{dx}{x^{p}}$ сходится при p < 1 и расходится при $p \ge 1$.

2 Вычислить интеграл $\int_{0}^{+\infty} x^{n} e^{-x} dx$, n = 0,1,2,...

 $P \, e \, w \, e \, h \, u \, e$. Проинтегрируем по частям:

$$I_{n} = \int_{0}^{+\infty} x^{n} e^{-x} dx = \begin{bmatrix} u = x^{n}; dv = e^{-x}; \\ du = nx^{n-1}; v = -e^{-x} \end{bmatrix} = -x^{n} e^{-x} \Big|_{0}^{+\infty} + n \int_{0}^{+\infty} x^{n-1} e^{-x} dx,$$

т. е. $I_n = n \cdot I_{n-1}$.

Поскольку

$$I_0 = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1$$
,

то, применяя последовательно рекуррентную формулу, получим

$$I_n = nI_{n-1} = n(n-1)I_{n-2} = \dots = n!I_0 = n!$$

3 Исследовать на сходимость интегралы

Pewehue. a) сравним интеграл $\int_{0}^{1} \frac{dx}{\ln x}$ с расходящимся

интегралом $\int_{0}^{1} \frac{dx}{x-1}$. Поскольку

$$\ln x = \ln(1 + (x-1)) \sim x-1$$

при $x \to 1$, то

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\ln (1 + (x - 1))}{x - 1} = 1;$$

Значит, интеграл $\int_{0}^{1} \frac{dx}{\ln x}$ расходится;

б) сравним данный интеграл со сходящимся интегралом $\int\limits_{1}^{+\infty} \frac{dx}{x^{\frac{3}{2}}}.$

Поскольку

$$\frac{1}{\sqrt{x^3+1}} < \frac{1}{\sqrt{x^3}} = \frac{1}{\frac{3}{x^2}}, \ \forall x \in [1;+\infty)$$

то из сходимости интеграла $\int_{1}^{+\infty} \frac{dx}{x^{\frac{3}{2}}}$ согласно признаку сравнения

следует, что интеграл $\int_{1}^{+\infty} \frac{dx}{\sqrt{x^3+1}}$ сходится.

4 Исследовать на сходимость интегралы

a)
$$\int_{1}^{+\infty} \frac{\sin x dx}{x}$$
, 6) $\int_{1}^{+\infty} \frac{|\sin x| dx}{x}$.

Решение. а) имеем

$$\int_{1}^{+\infty} \frac{\sin x dx}{x} = -\int_{1}^{+\infty} \frac{d(\cos x)}{x} = -\frac{\cos x}{x} \Big|_{1}^{\infty} + \int_{1}^{+\infty} \cos x d\left(\frac{1}{x}\right) =$$

$$=\cos 1-\int_{1}^{+\infty}\frac{\cos x}{x^{2}}dx.$$

Поскольку $\left| \frac{\cos x}{x^2} \right| \le \frac{1}{x^2}$ и интеграл $\int_{1}^{+\infty} \frac{dx}{x^2}$ сходится, то интеграл

$$\int\limits_{1}^{+\infty} \frac{\cos x}{x^2} dx$$
 абсолютно сходится. Следовательно, интеграл
$$\int\limits_{1}^{+\infty} \frac{\sin x dx}{x}$$
 сходится;

б) из неравенства

$$\left|\sin x\right| \ge \sin^2 x = \frac{1 - \cos 2x}{2}$$

следует, что для любого $\eta > 1$ выполняется неравенство

$$\int_{1}^{\eta} \frac{|\sin x| dx}{x} \ge \frac{1}{2} \int_{1}^{\eta} \frac{dx}{x} - \frac{1}{2} \int_{1}^{\eta} \frac{\cos 2x dx}{x}.$$

Интеграл $\int_{-\infty}^{+\infty} \frac{dx}{x}$ расходится.

Интеграл $\int_{-\infty}^{+\infty} \frac{\cos 2x dx}{x}$ сходится, поскольку

$$\int_{1}^{+\infty} \frac{\cos 2x dx}{x} = \frac{1}{2} \int_{1}^{+\infty} \frac{d(\sin 2x)}{x} = \frac{1}{2} \frac{\sin 2x}{x} \Big|_{1}^{\infty} + \frac{1}{2} \int_{1}^{+\infty} \frac{\sin 2x}{x^{2}} dx =$$

$$= -\frac{1}{2} \sin 2x + \frac{1}{2} \int_{1}^{+\infty} \frac{\sin 2x}{x^{2}} dx$$

и интеграл $\int_{1}^{+\infty} \frac{\sin 2x}{x^2} dx$ сходится $\left(\left| \frac{\sin 2x}{x^2} \right| \le \frac{1}{x^2} \right)$ и интеграл $\int_{1}^{+\infty} \frac{dx}{x^2} dx$ сходится).

Значит, интеграл $\int_{1}^{+\infty} \frac{|\sin x| dx}{x}$ расходится.

5 Исследовать на сходимость интеграл $\int_{1}^{+\infty} \frac{\sin x dx}{x^p}$.

 $P\,e\,w\,e\,h\,u\,e$. Функция $f(x)=\sin x$ имеет ограниченную первообразную $F(x)=-\cos x$, а функция $g(x)=\frac{1}{x^p}$, p>0 , убывает при $x\to +\infty$, т. е. $\lim_{x\to +\infty}\frac{1}{x^p}=0$. Согласно признаку Дирихле интеграл $\int\limits_{-\infty}^{+\infty}\frac{\sin x dx}{x^p}$ сходится.

6 Исследовать на сходимость интеграл $\int\limits_{1}^{+\infty} \frac{\sin x \arctan x \, dx}{x^p}.$

Peuehue. Интеграл $\int\limits_{1}^{+\infty} \frac{\sin x dx}{x^p}$ сходится, а функция $g(x) = \operatorname{arctg} x$ ограничена и монотонна. В силу признака Абеля интеграл

$$\int_{1}^{+\infty} \frac{\sin x \arctan x dx}{x^{p}}$$

сходится.

Раздел 5 Теория рядов

Тема 1 Ряды с неотрицательными членами

1 Записать первые шесть членов ряда по заданному общему члену:

a)
$$a_k = \frac{k}{3^k (2k+1)}$$
;
B) $a_k = \frac{3k+4}{4k-1}$;

6)
$$a_k = \frac{k!}{2^k (2k-1)!!};$$
 $r) a_k = \frac{(2k+1)!!}{(k+1)2^k}.$

2 Записать формулу общего члена для рядов:

a)
$$1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \dots;$$
 B) $1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots;$

6)
$$\frac{10}{7} + \frac{100}{9} + \frac{1000}{11} + \frac{10000}{13} + \dots$$
; r) $\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \frac{7}{8} + \dots$

3 Найти суммы рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{(4k-3)(4k+1)}$$
;

B)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+2)}$$
;

6)
$$\sum_{k=1}^{\infty} \frac{1}{2^{k-1}}$$
;

$$\Gamma) \sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{5^{k-1}}.$$

4 Используя необходимое условие, исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \frac{2k+1}{3k+2}$$
;

6)
$$\sum_{k=1}^{\infty} \frac{5k-2}{5k+3}$$
.

5 С помощью интегрального признака исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k\sqrt{k}};$$

$$\Gamma) \sum_{k=2}^{\infty} \frac{1}{k \ln^2 k};$$

$$6) \sum_{k=2}^{\infty} \frac{1}{k \ln k};$$

B)
$$\sum_{k=2}^{\infty} \frac{1}{(k+1) \ln^3 k}$$
;

e)
$$\sum_{k=1}^{\infty} k^2 e^{-k^3}$$
.

6 С помощью признаков сравнения исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{2^k + 9}$$
;

6)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 6}$$
;

e)
$$\sum_{k=1}^{\infty} \frac{1}{3k-1}$$
;

B)
$$\sum_{k=1}^{\infty} \frac{5^k}{5^{2k} + 7}$$
;

ж)
$$\sum_{k=1}^{\infty} \frac{1}{k\sqrt{k^2+1}}$$
;

$$\Gamma) \sum_{k=1}^{\infty} \frac{k+1}{\sqrt{k^4+9}};$$

и)
$$\sum_{k=1}^{\infty} \frac{k^3 - 3k^2 + 5}{2k^5 + 9k}$$
.

7 C помощью признака Д'аламбера исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k \cdot 5^{2k-1}}$$
;

B)
$$\sum_{k=1}^{\infty} \frac{(2k-1)!!}{(2k)!!} \frac{1}{k2^{k+1}};$$

6)
$$\sum_{k=2}^{\infty} \frac{2k}{3^k(2k-1)}$$
;

$$\Gamma) \sum_{k=1}^{\infty} \frac{3^k}{k^4}.$$

8 С помощью признака Коши исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \left(\frac{3k-1}{4k+5} \right)^k$$
;

$$\Gamma) \sum_{k=1}^{\infty} \left(\frac{5k+2}{3k+4} \right)^k;$$

6)
$$\sum_{k=2}^{\infty} \left(\frac{2k^2 + 5k + 2}{3k^2 + k + 3} \right)^k$$
;

$$\Lambda$$
) $\sum_{k=1}^{\infty} \left(\frac{3k^2 + 6k + 8}{2k^2 - k + 6} \right)^k$;

B)
$$\sum_{k=1}^{\infty} 2^k \left(\frac{k}{k+4} \right)^{k^2}$$
;

e)
$$\sum_{k=1}^{\infty} \left(\frac{3k}{k+5} \right)^k \left(\frac{k+2}{k+3} \right)^{k^2}.$$

Примеры оформления решения

1 Записать первые пять членов ряда, общий член которого задан формулой $a_k = \frac{k}{2^{k-1}(3k+1)}$.

 $P\,e\,uu\,e\,u\,u\,e$. Полагая в формуле общего члена $k=1\,,\,2,\,3,\,4,\,5,\,$ получим

$$a_1 = \frac{1}{2^{1-1}(3 \cdot 1 + 1)} = \frac{1}{4},$$

$$a_2 = \frac{2}{2^{2-1}(3 \cdot 2 + 1)} = \frac{2}{14},$$

$$a_3 = \frac{3}{2^{3-1}(3 \cdot 3 + 1)} = \frac{3}{40},$$

$$a_4 = \frac{4}{2^{4-1}(3 \cdot 4 + 1)} = \frac{4}{104},$$

$$a_5 = \frac{5}{2^{5-1}(3 \cdot 5 + 1)} = \frac{5}{256}.$$

Ряд можно записать в виде

$$\sum_{k=1}^{\infty} \frac{k}{2^{k-1}(3k+1)} = \frac{1}{4} + \frac{2}{14} + \frac{3}{40} + \frac{4}{104} + \frac{5}{256} + \dots$$

2 Найти общий член ряда

$$\frac{2}{3} + \left(\frac{3}{7}\right)^2 + \left(\frac{4}{11}\right)^3 + \left(\frac{5}{15}\right)^4 + \dots$$

 $Pe\, w\, e\, h\, u\, e$. Показатель степени каждого члена совпадает с номером этого члена, поэтому показатель степени k -го члена равен k .

Числители дробей $\frac{2}{3}$, $\frac{3}{7}$, $\frac{4}{11}$, $\frac{5}{15}$, ... образуют арифметическую прогрессию с первым членом 2 и разностью 1. Поэтому k -й числитель равен k+1. Знаменатели образуют арифметическую прогрессию с первым членом 3 и разностью 4. Поэтому k -й знаменатель равен 4k-1. Следовательно, общий член ряда имеет вид $a_k = \left(\frac{k+1}{4k-1}\right)^k$.

3 Вычислить сумму ряда $\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)}$.

Решение. Поскольку

$$\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right),$$

TO

$$\begin{split} a_1 &= \frac{1}{2} \bigg(1 - \frac{1}{3} \bigg), \ a_2 = \frac{1}{2} \bigg(\frac{1}{3} - \frac{1}{5} \bigg), \\ a_3 &= \frac{1}{2} \bigg(\frac{1}{5} - \frac{1}{7} \bigg), \ a_4 = \frac{1}{2} \bigg(\frac{1}{7} - \frac{1}{9} \bigg) \text{ и т. д.} \end{split}$$

Следовательно,

$$\begin{split} S_n &= \frac{1}{2} \bigg(1 - \frac{1}{3} \bigg) + \frac{1}{2} \bigg(\frac{1}{3} - \frac{1}{5} \bigg) + \frac{1}{2} \bigg(\frac{1}{7} - \frac{1}{7} \bigg) + \ldots + \frac{1}{2} \bigg(\frac{1}{2n-1} - \frac{1}{2n+1} \bigg) = \\ &= \frac{1}{2} \bigg(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{5} + \frac{1}{7} - \frac{1}{7} + \ldots + \frac{1}{2n-1} - \frac{1}{2n+1} \bigg) = \frac{1}{2} \bigg(1 - \frac{1}{2n+1} \bigg). \end{split}$$
 Тогда

$$\lim_{n\to\infty} S_n = \frac{1}{2} \lim_{n\to\infty} \left(1 - \frac{1}{2n-1}\right) = \frac{1}{2}.$$

Значит, ряд сходится и сумма ряда равна $\frac{1}{2}$.

4 Исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} (-1)^{k-1} a$$
, $a \in \square$, $a \neq 0$;

6)
$$\sum_{k=1}^{\infty} aq^{k-1}$$
, $a \neq 0$.

 $Pe \, me \, hu \, e$. a) для ряда

$$a - a + a - a + \dots = \sum_{k=1}^{\infty} (-1)^{k-1} a$$

составим частичные суммы:

$$S_1 = a$$
, $S_2 = 0$, ..., $S_{2n-1} = a$, $S_{2n} = 0$,

Последовательность частичных сумм (S_n) этого ряда не имеет предела и поэтому данный ряд расходится;

б) сумма n первых членов ряда

$$a + aq + aq^{2} + ... + aq^{k-1} + ... = \sum_{k=1}^{\infty} aq^{k-1}$$

имеет вид

$$S_n = a + aq + aq^2 + ... + aq^{n-1} = \frac{a(1-q^n)}{1-q}, \ q \neq 1.$$

Так как

$$\lim_{n\to\infty}q^n=\begin{cases} 0,\ \text{если}\ \big|q\big|<1,\\ \infty,\ \text{если}\ \big|q\big|>1,\end{cases}$$

то

$$S_n = egin{cases} \dfrac{a}{1-q}, \ \operatorname{если}\left|q
ight| < 1, \ \infty, & \operatorname{если}\left|q
ight| > 1. \end{cases}$$

При q=-1 ряд $\sum_{k=1}^{\infty}aq^{k-1}$ совпадает с рядом $\sum_{k=1}^{\infty}\left(-1\right)^{k-1}a$, при q=1 , $S_n=na$ и $\lim_{n\to\infty}S_n=\infty$.

Следовательно, ряд $\sum_{k=1}^{\infty} aq^{k-1}$ сходится при |q| < 1 и его

сумма $S = \frac{a}{1-q}$, при $|q| \ge 1$ он расходится.

5 Исследовать сходимость ряда $\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^k$

Решение. Вычислим предел:

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = e \neq 0.$$

Согласно теореме 1 не выполняется необходимое условие сходимости ряда. Значит, данный ряд расходится.

6 Исследовать сходимость гармонического ряда

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} + \dots = \sum_{k=1}^{\infty} \frac{1}{k}.$$

 $Pe\ me\ nu\ e$. Очевидно, что $\lim_{n\to\infty}\frac{1}{k}=0$, однако гармонический ряд расходится. Докажем, что гармонический ряд расходится двумя способами.

<u>1 способ</u>. Действительно, предположим, что ряд $\sum_{k=1}^{\infty} \frac{1}{k}$

сходится и его сумма равна S . Тогда

$$\lim_{n\to\infty} \left(S_{2n} - S_n \right) = \lim_{n\to\infty} S_{2n} - \lim_{n\to\infty} S_n = S - S = 0.$$

Из неравенства

$$S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge n \frac{1}{2n} = \frac{1}{2}, \ n \in \square$$

предельным переходом по *n* получаем противоречие: $0 \ge \frac{1}{2}$.

2 способ. Имеем:

$$\left| a_{k+1} + a_{k+2} + \dots + a_{k+p} \right| = \left| \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{k+p} \right| =$$

$$=\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{k+p}$$
.

Для любого $t\in \square$ положим k=t и p=t. Так как $\frac{1}{t+i}\geq \frac{1}{t+t}\;,\; i=1,2,...,t\;,$ то получим:

$$\left| a_{k+1} + a_{k+2} + \ldots + a_{k+p} \right| > \frac{1}{2t} + \frac{1}{2t} + \ldots + \frac{1}{2t} = \frac{1}{2}.$$

Таким образом, для любого $0 < \varepsilon < \frac{1}{2}$ критерий Коши не выполняется. Следовательно, гармонический ряд расходится.

7 Исследовать сходимость обобщенного гармонического ряда (ряда Дирихле)

$$\sum_{k=1}^{\infty} \frac{1}{k^p}, \ p \in \square .$$

 $Pe\, me\, nu\, e$. При p=1 ряд совпадает с гармоническим рядом и расходится.

Если $p \le 0$, то $\frac{1}{k^p} \ge 1 \quad \forall k \in \square$ и $\lim_{k \to \infty} \frac{1}{k^p} \ne 0$. В этом случае ряд расходится, так как нарушается необходимое условие сходимости ряда.

Пусть p > 0 и $p \ne 1$. Положим $f(x) = \frac{1}{x^p}$. Функция f(x) монотонно убывает на промежутке $[1;+\infty)$.

Обобщенный гармонический ряд $\sum_{k=1}^{\infty} \frac{1}{k^p}$ сходится и расходится одновременно с интегралом $\int_{-\infty}^{\infty} \frac{dx}{x^p}$.

Известно, что несобственный интеграл

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \begin{cases} \frac{1}{1-p}, & \text{если } p > 1, \\ \infty, & \text{если } 0$$

Следовательно, ряд $\sum_{k=1}^{\infty} \frac{1}{k^p}$ сходится при p>1 и расходится

при $p \leq 1$.

8 Исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k^k}$$
;

$$B) \sum_{k=1}^{\infty} \frac{k!}{k^k};$$

B)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k};$$
 μ $\sum_{k=1}^{\infty} \left(\frac{2k}{k+1}\right)^k;$

$$6) \sum_{k=1}^{\infty} \sin \frac{\pi}{k}$$

$$\Gamma) \sum_{k=1}^{\infty} \frac{2^k}{k^4};$$

6)
$$\sum_{k=1}^{\infty} \sin \frac{\pi}{k}$$
; r) $\sum_{k=1}^{\infty} \frac{2^k}{k^4}$; e) $\sum_{k=1}^{\infty} \frac{3k^2 + 5k + 1}{k^4 - 10k^2 - 5}$.

Pemenue. a) так как $\frac{1}{k^k} \le \frac{1}{k^2}$ $\forall k \ge 2$ и обобщенный

гармонический ряд $\sum_{k=1}^{\infty} \frac{1}{k^2}$ сходится (p = 2 > 1), то согласно признаку сравнения сходится и данный ряд;

б) сравним ряд $\sum_{k=1}^{\infty} \sin \frac{\pi}{k}$ с гармоническим рядом $\sum_{k=1}^{\infty} \frac{1}{k}$. Поскольку

$$\lim_{k \to \infty} \frac{\sin \frac{\pi}{k}}{\frac{1}{k}} = \pi \lim_{n \to \infty} \frac{\sin \frac{\pi}{k}}{\frac{\pi}{k}} = \pi , \ 0 < \pi < \infty ,$$

и гармонический ряд расходится, то расходится и исходный ряд;

в) вычислим предел:

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \frac{(k+1)!k^k}{(k+1)^{k+1}k!} = \lim_{k \to \infty} \frac{k^k}{(k+1)^n} = \lim_{k \to \infty} \frac{1}{\left(1 + \frac{1}{k}\right)^k} = \frac{1}{e}.$$

Так как $L = \frac{1}{2} < 1$, то по признаку Д'аламбера данный ряд сходится;

г) вычислим предел:

$$\lim_{k \to \infty} \frac{2^{k+1} k^4}{\left(k+1\right)^4 \cdot 2^k} = 2 \lim_{k \to \infty} \frac{1}{\left(1+\frac{1}{k}\right)^4} = 2.$$

L = 2 > 1, то согласно признаку Д'аламбера исходный ряд расходится;

д) так как

$$\lim_{k\to\infty} \sqrt[k]{a_k} = \lim_{k\to\infty} \sqrt[k]{\left(\frac{2k}{k+1}\right)^k} = \lim_{k\to\infty} \frac{2k}{k+1} = 2 > 1,$$

то согласно признаку Коши данный ряд расходится;

e) сравним ряд $\sum_{k=1}^{\infty} \frac{3k^2 + 5k + 1}{k^4 - 10k^2 - 5}$ с обобщенным

гармоническим рядом $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Вычислим предел:

$$\lim_{k \to \infty} \frac{\frac{3k^2 + 5k + 1}{k^4 - 10k^2 - 5}}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{\left(3k^2 + 5k + 1\right)k^2}{k^4 - 10k^2 - 5} = 3, 0 < 3 < \infty.$$

Поскольку для ряда $\sum_{k=1}^{\infty} \frac{1}{k^2}$ имеем p=2, то исходный ряд сходится вместе с обобщенным гармоническим рядом.

Тема 2 Знакопеременные ряды

1 Исследовать сходимость знакопеременных рядов:

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{\frac{k(k-1)}{2}}}{3^k}$$
;

$$\Gamma$$
) $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{\frac{k(k-1)(k-2)}{2}}}{k^2}$;

6)
$$\sum_{k=1}^{\infty} \frac{(-5)^k}{1+(-5)^{2k}}$$
;

$$\mathbb{Z}$$
) $\sum_{k=1}^{\infty} \frac{(-1)^k k}{3k-1}$;

B)
$$\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{k \ln k}$$
;

e)
$$\sum_{k=1}^{\infty} \frac{\cos k\alpha}{k^4}$$
.

2 Исследовать абсолютно или условно сходятся ряды:

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}}$$
;

$$\Gamma$$
) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{3k(3k-1)}$;

$$6) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k \ln k)^2};$$

Д)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}(3^k+1)}{k \cdot 3^k};$$

B)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k+2^k}$$
;

e)
$$\sum_{k=1}^{\infty} \frac{(-1)^k (2k)!!}{(k+1)^k}$$
.

3 С точностью до 0,001 вычислить сумму рядов:

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!}$$
;

$$\Gamma$$
) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k 2^k}$;

6)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$$
;

$$\Lambda$$
 $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^k};$

B)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2}$$
;

e)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt[3]{k+1}}$$
.

- **4** Найти сумму ряда $\sum_{k=1}^{\infty} \left(\frac{1}{4^k} + \frac{(-1)^k}{5^k} \right)$.
- **5** Составить ряд, полученный из разности соответствующих членов рядов $\sum_{k=1}^{\infty} \frac{1}{2k}$ и $\sum_{k=1}^{\infty} \frac{1}{2k+1}$. Сходится ли полученный ряд?
- **6** Даны два ряда $\sum_{k=1}^{\infty} \frac{1}{2^k}$ и $\sum_{k=1}^{\infty} \frac{(-1)^k}{2^k}$. Записать первые пять членов их произведения. Сходится ли полученный ряд?

Примеры оформления решения

1 Исследовать сходимость ряда $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2}$.

 $P\,e\,w\,e\,H\,u\,e$. Так как $\frac{1}{k^2}>\frac{1}{\left(k+1\right)^2}$ $\forall k\in\square$ и $\lim_{k\to\infty}\frac{1}{k^2}=0$, то данный ряд, согласно признаку Лейбница, сходится.

2 Исследовать сходимость рядов:

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2^k}$$
,

6)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$$
.

Pewehue. а) ряд, составленный из абсолютных величин исходного ряда, имеет вид $\sum_{k=1}^{\infty} \frac{1}{2^k}$ и является сходящимся.

Значит, ряд $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2^k}$ является абсолютно сходящимся;

б) по признаку Лейбница ряд $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k}$ сходится. С другой стороны, ряд $\sum_{k=1}^{\infty} \left|a_k\right| = \sum_{k=1}^{\infty} \frac{1}{k}$ является расходящимся

гармоническим рядом. Значит, ряд $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ не является абсолютно сходящимся.

3 Найти сумму ряда $\sum_{k=1}^{\infty} (-1)^k$.

 $Pe\, we\, u\, e\, u\, e\, .$ Ряд $\sum_{k=1}^{\infty} \left(-1\right)^{k}$ является расходящимся, так как

 $\lim_{k\to\infty} (-1)^k$ не существует.

Ряды

$$(1-1)+(1-1)+(1-1)+...$$

И

$$1-(1-1)-(1-1)-(1-1)-...$$

полученные из него путем объединения его членов, сходятся:

$$(1-1)+(1-1)+(1-1)+...=0$$
,
 $1-(1-1)-(1-1)-(1-1)-...=1$.

Таким образом, для исходного ряда сумма ряда не существует, а ряды, полученные из него указанным объединением его членов, имеют конечные суммы.

4 Исследовать на сходимость ряд $\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k}$.

 $P\,e\,w\,e\,\mu\,u\,e$. Последовательность $\left(a_{_k}\right) = \left(\frac{1}{k}\right)$ монотонно убывающая и $\lim_{k\to\infty}\frac{1}{k}=0$.

Рассмотрим последовательность $(B_n) = \left(\sum_{k=1}^n \sin k\alpha\right)$. При $\alpha \neq 2m\pi$, $m \in \square$, имеем

$$\sum_{k=1}^{n} \sin k\alpha = \sin \alpha + \sin 2\alpha + \dots + \sin n\alpha =$$

$$=\frac{2\sin\alpha\sin\frac{\alpha}{2}+2\sin2\alpha\sin\frac{\alpha}{2}+...+2\sin n\alpha\sin\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}}=$$

$$=\frac{\cos\frac{\alpha}{2}-\cos\frac{3\alpha}{2}+\cos\frac{3\alpha}{2}-...+\cos\left(n-\frac{1}{2}\right)\frac{\alpha}{2}-\cos\left(n+\frac{1}{2}\right)\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}}=$$

$$=\frac{\cos\frac{\alpha}{2}-\cos\left(n+\frac{1}{2}\right)\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}}.$$

Поэтому

$$\left| \sum_{k=1}^{n} \sin k\alpha \right| \le = \frac{\left| \cos \frac{\alpha}{2} \right| + \left| \cos \left(n - \frac{1}{2} \right) \frac{\alpha}{2} \right|}{2 \left| \sin \frac{\alpha}{2} \right|} \le \frac{1}{\left| \sin \frac{\alpha}{2} \right|}.$$

При $\alpha \neq 2m\pi$, $m \in \square$, все рассматриваемые суммы ограничены. В силу признака Дирихле ряд $\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k}$ сходится.

При $\alpha = 2m\pi$, $m \in \square$, все члены ряда обращаются в нуль и ряд также сходится.

5 Исследовать сходимость ряда
$$\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k} \cos \frac{\pi}{k}$$
 .

 $P\,e\,w\,e\,h\,u\,e$. Последовательность $\left(a_k\right) = \left(\cos\frac{\pi}{k}\right)$ ограничена и монотонна. Ряд сходится по признаку Дирихле. Согласно признаку Абеля ряд $\sum_{k=1}^\infty \frac{\sin k\alpha}{k} \cos\frac{\pi}{k}$ сходится.

6 Сколько членов ряда $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^4}$ нужно взять, чтобы вычислить его сумму с точностью до 0,0001?

Peuehue. Этот ряд является знакочередующимся рядом, удовлетворяющим условиям признака Лейбница:

$$1 > \frac{1}{2^4} > \frac{1}{3^4} > \dots > \frac{1}{k^4} > \dots,$$

$$\lim_{k \to \infty} \frac{1}{k^4} = 0.$$

Следовательно, данный ряд сходится, причем абсолютно, поскольку ряд

$$\sum_{k=1}^{\infty} \left| \frac{(-1)^{k-1}}{k^4} \right| = \sum_{k=1}^{\infty} \frac{1}{k^4}$$

является сходящимся обобщенным гармоническим рядом (p = 4 > 1).

Определим число членов, которые нужно взять, чтобы вычислить его сумму с заданной точностью.

Если

$$\frac{1}{k^4}$$
 < 0,0001 или $\frac{1}{k^4}$ < $\frac{1}{10000}$,

TO k > 10.

Следовательно, нужно взять 10 членов данного ряда.

Так как
$$a_{11} = \frac{1}{11^4} < \frac{1}{10^4} = 0,0001$$
, то оценка ряда есть
$$R_{10} < a_{11} < 0,0001$$
.

7 Составить сумму рядов $\sum_{k=1}^{\infty} \frac{1}{2^k}$ и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{3^k}$. Сходится ли

полученный ряд?

Pemenue. Ряд $\sum_{k=1}^{\infty} \frac{1}{2^k}$ есть геометрический со

знаменателем
$$q_1 = \frac{1}{2}$$
, его сумма $S_1 = \frac{1}{1 - \frac{1}{2}} = 2$, второй

$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{3^k}$$
 геометрический ряд со знаменателем $q_2 = -\frac{1}{3}$, его

сумма
$$S_2 = \frac{1}{1 + \frac{1}{3}} = \frac{3}{4}$$
.

По определению суммы двух рядов полученный ряд имеет вид

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} + \frac{\left(-1\right)^k}{3^k} \right).$$

Данный ряд сходится, его сумма

$$S = S_1 + S_2 = 2,75$$
.

Тема 3 Функциональные ряды

1 Доказать, что последовательность $\left(\frac{k^2}{k^2+x^2}\right)$ равномерно сходится на отрезке [-1;1].

2 Найти область сходимости функциональных рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k!} \left(\frac{2x-3}{4x+5} \right)^k$$
;

$$\square$$
 $\sum_{k=1}^{\infty} \frac{1}{k\sqrt{k}} \left(\frac{x-1}{x+1} \right)^k;$

$$6) \sum_{k=1}^{\infty} \frac{1}{(2k-1)x^{2k-1}};$$

e)
$$\sum_{k=1}^{\infty} 4^k (3x+2)^{2k-1}$$
;

$$\mathbf{B}) \sum_{k=1}^{\infty} k \, e^{kx} \; ;$$

ж)
$$\sum_{k=1}^{\infty} \left(\frac{5-x^2}{4} \right)^k;$$

$$\Gamma$$
) $\sum_{k=1}^{\infty} \left(\frac{3x+1}{x^2+x+1} \right)^k$;

и)
$$\sum_{k=1}^{\infty} k^2 e^{-k x^2}$$
.

3 Доказать равномерную сходимость функционального ряда $\sum_{i=1}^{\infty} \frac{1}{x^2 + k}.$

4 Исследовать равномерную сходимость функциональных рядов:

a)
$$\sum_{k=1}^{\infty} \frac{1}{x^2 + 3^k}$$
;

$$6) \sum_{k=1}^{\infty} \frac{\cos kx}{x^2 + k^2} .$$

5 Исследовать непрерывность функциональных рядов:

a)
$$\sum_{k=1}^{\infty} \frac{\sin kx}{x^2 + k^2};$$

6)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k+x^2}$$
.

6 Найти сумму функциональных рядов:

a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k x^{2k+1}}{2k+1}$$
;

6)
$$\sum_{k=1}^{\infty} \frac{x^k}{k}$$
.

Примеры оформления решения

1 Доказать, что функциональная последовательность $(x^n)_{n=1}^{\infty} = (1; x; x^2; ...)$, заданная на множестве $X = \begin{bmatrix} 0; \frac{1}{2} \end{bmatrix}$, является равномерно сходящейся на этом множестве.

 $Pe\, m\, e\, n\, u\, e$. Предел существует и $\lim_{n\to\infty}x^n=0=f(x)$ для всех

$$x \in \left[0; \frac{1}{2}\right]$$
. Так как $\sup_{\left[0; \frac{1}{2}\right]} \left|x^n - 0\right| = \left(\frac{1}{2}\right)^n$, то

$$\lim_{n\to\infty} \sup_{0:\frac{1}{2}} \left| x^n - 0 \right| = \lim_{n\to\infty} \left(\frac{1}{2} \right)^n = 0.$$

Поэтому последовательность $(x^n) = (1; x; x^2; ...)$ сходится равномерно к нулю на отрезке $X = \begin{bmatrix} 0; \frac{1}{2} \end{bmatrix}$: $x^n \xrightarrow[0; \frac{1}{2}]$ 0.

2 Найти область абсолютной сходимости функционального ряда $1+x+x^2+...+x^{n-1}+...=\sum_{i=1}^{\infty}x^{k-1}$.

Pemenue. Зафиксируем точку x и применим признак Д'аламбера:

$$\lim_{k\to\infty}\left|\frac{x^k}{x^{k-1}}\right| = |x|.$$

Ряд $\sum_{k=1}^{\infty} \left| x \right|^{k-1}$ сходится при $\left| x \right| < 1$ и расходится при $\left| x \right| \ge 1$. Таким образом, областью абсолютной сходим

Таким образом, областью абсолютной сходимости функционального ряда $\sum_{k=1}^{\infty} x^{k-1}$ является интервал (-1;1).

3 Найти область сходимости ряда
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(\frac{x-1}{2x+1} \right)^k$$
.

Peuehue. Применим признак Коши к ряду, составленному из абсолютных величин членов данного ряда. Так как

$$\lim_{k\to\infty} \sqrt[k]{|u_k(x)|} = \lim_{k\to\infty} \sqrt[k]{\frac{1}{\sqrt{k}} \left(\frac{x-1}{2x+1}\right)^k} = \left|\frac{x-1}{2x+1}\right| \lim_{k\to\infty} \frac{1}{k^{\frac{1}{2k}}} = \left|\frac{x-1}{2x+1}\right|,$$

то ряд сходится, когда $\left| \frac{x-1}{2x+1} \right| < 1$.

Решая данное неравенство, получим

$$-1 < \frac{x-1}{2x+1} < 1 \Leftrightarrow$$

$$\begin{cases} \begin{cases} 2x+1 \ge 0, \\ -(2x+1) < x - 1 < 2x + 1, \\ \end{cases} & \Leftrightarrow \begin{cases} \begin{cases} x \ge \frac{-1}{2}, \\ x > 0, \\ x > -2, \end{cases} \\ \begin{cases} x > -2, \end{cases} & \Leftrightarrow \begin{cases} x > 0, \\ x < -2, \end{cases} \end{cases}$$

$$\begin{cases} x < -\frac{1}{2}, \\ x < 0, \\ x < -2, \end{cases}$$

Итак, ряд сходится при $x \in (-\infty; -2) \cup (0; +\infty)$. Исследуем сходимость ряда на концах интервала.

При x=0 имеем знакочередующийся ряд $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{\sqrt{k}}$, являющийся сходящимся, поскольку он удовлетворяет условиям Лейбница.

При x=-2 получим ряд $\sum_{k=1}^{\infty}\frac{1}{\sqrt{k}}$, являющийся расходящимся как обобщенный гармонический ряд ($p=\frac{1}{2}<1$).

4 Исследовать ряд

$$\sum_{k=1}^{\infty} \frac{x^2}{(1+x^2)^{k-1}}$$

на а) поточечную, б) равномерную сходимость.

Решение. а) так как

$$x^{2} + \frac{x^{2}}{1+x^{2}} + \frac{x^{2}}{\left(1+x^{2}\right)^{2}} + \dots + \frac{x^{2}}{\left(1+x^{2}\right)^{n-1}} + \dots = \sum_{k=1}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{k-1}},$$

то члены исходного ряда при $x \neq 0$ образуют геометрическую прогрессию со знаменателем $\frac{1}{1+x^2} < 1$, а при x = 0 все обращаются в нуль. Тогда

$$S(x) = \begin{cases} 0, \text{ если } x = 0, \\ 1 + x^2, \text{ если } x \neq 0. \end{cases}$$

Следовательно, областью поточечной сходимости ряда $\sum_{k=1}^{\infty} \frac{x^2}{\left(1+x^2\right)^{k-1}}$ является вся числовая ось \square . При этом, хотя все члены ряда непрерывны на \square , сумма S(x) разрывна в точке x=0 ;

б) пусть $0 < \varepsilon < 1$ и $x \neq 0$. Тогда

$$S_n(x) = (1 + x^2) \left(1 - \frac{1}{(1 + x^2)^n}\right),$$

и неравенство

$$\left| S(x) - S_n(x) \right| = \frac{1}{\left(1 + x^2\right)^{n-1}} < \varepsilon$$

выполняется при $n>N\left(\varepsilon,x\right)=1+\left\lceil 1-\frac{\ln \varepsilon}{\ln \left(1+x^2\right)}\right\rceil.$

Действительно,

$$\frac{1}{\left(1+x^2\right)^{n-1}} < \varepsilon \implies \left(1+x^2\right)^{n-1} > \frac{1}{\varepsilon} \implies (n-1)\ln\left(1+x^2\right) > -\ln\varepsilon.$$

Отсюда
$$n > 1 - \frac{\ln \varepsilon}{\ln \left(1 + x^2\right)}$$
.

Отсюда
$$N(\varepsilon, x) = 1 + \left[1 - \frac{\ln \varepsilon}{\ln(1 + x^2)}\right].$$

Поскольку $N(\varepsilon,x) \to +\infty$ при $x \to 0$ и $0 < \varepsilon < 1$, то при выбранном ε не существует конечного номера $N(\varepsilon)$, который не зависит от x, такого, чтобы выполнялось неравенство $|S(x) - S_n(x)| < \varepsilon \ \forall n > N(\varepsilon), \ \forall x \in \square$.

Значит, сходимость ряда $\sum_{k=1}^{\infty} \frac{x^2}{\left(1+x^2\right)^{k-1}}$ на \square неравномерная.

5 Является ли сумма ряда $\sum_{k=1}^{\infty} \frac{\cos kx}{k^3}$ непрерывной функцией?

 $Pe \, we \, ue \, ue$. Каждый член $u_k(x) = \frac{\cos kx}{k^3}$, k = 1, 2, ..., есть

функция, непрерывная от x. Поскольку $\left| \frac{\cos kx}{k^3} \right| \le \frac{1}{k^3}$, то и

мажорантный ряд $\sum_{k=1}^{\infty} \frac{1}{k^3}$ является сходящимся как обобщенный

гармонический ряд, p = 3 > 1, то ряд $\sum_{k=1}^{\infty} \frac{\cos kx}{k^3}$ сходится

равномерно на всей числовой оси. Поэтому сумма этого ряда непрерывна при всех x как сумма равномерно сходящегося ряда непрерывных функций.

6 Исследовать равномерную сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{arctg} \frac{x}{k}$.

 $Pe\, w\, e\, h\, u\, e$. Рассмотрим ряд $\sum_{k=1}^{\infty} \frac{1}{k^2+x^2}$.

Так как $\frac{1}{k^2+x^2} \leq \frac{1}{k^2}$ $\forall x \in \square$, а ряд $\sum_{k=1}^{\infty} \frac{1}{k^2}$ сходится, то по

признаку Вейерштрасса исходный ряд сходится равномерно на \Box . Интегрируя его почленно на отрезке [0;x], получаем

$$\sum_{k=1}^{\infty} \int_{0}^{x} \frac{1}{k^2 + t^2} dt = \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{arctg} \frac{x}{k}.$$

Значит, ряд $\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{arctg} \frac{x}{k}$ сходится равномерно на \square .

7 Найти сумму ряда $\sum_{k=1}^{\infty} k x^{k-1}$.

P е u е u u е . Очевидно, что ряд $\sum_{k=0}^{\infty} x^k$ сходится при |x| < 1 и

его сумма равна $\frac{1}{1-x}$. Ряд $\sum_{k=1}^{\infty} k x^{k-1}$, полученный почленным дифференцированием ряда сходится равномерно при $|x| \leq q < 1$ на основании признака Вейерштрасса, так как он мажорируется числовым рядом $\sum_{k=1}^{\infty} k q^{k-1}$, сходящимся по признаку Д'аламбера.

Используя свойство почленного дифференцирования, получим:

$$\sum_{k=1}^{\infty} k x^{k-1} = \frac{d}{dx} \left(\sum_{k=0}^{\infty} x^k \right) = \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{1}{\left(1-x \right)^2} , \ \forall x \in (-1;1).$$

Тема 4 Степенные ряды

1 Найти радиус сходимости степенных рядов:

а)
$$\sum_{k=0}^{\infty} \frac{x^k}{7^k}$$
; д) $\sum_{k=0}^{\infty} (-1)^k 5^k x^k$;

6)
$$\sum_{k=0}^{\infty} k3^k x^k ;$$

e)
$$\sum_{k=1}^{\infty} k!(x-2)^k$$
;

B)
$$\sum_{k=1}^{\infty} \frac{2^{k^2}}{k!} (x+3)^k$$
;

ж)
$$\sum_{k=1}^{\infty} \frac{3^k}{k!} (x+1)^k$$
;

$$\Gamma$$
) $\sum_{k=1}^{\infty} (1 - \frac{1}{k})^{k^2} (x - e)^k$;

$$\mathrm{u}) \sum_{k=1}^{\infty} \left(\frac{x}{\sqrt{k}} \right)^k.$$

2 Найти область сходимости степенных рядов:

a)
$$\sum_{k=1}^{\infty} \frac{(x-2)^{2k-1}}{k^3}$$
;

B)
$$\sum_{k=1}^{\infty} \frac{(x+2)^k}{k(5^k+1)}$$
;

6)
$$\sum_{k=1}^{\infty} \frac{(x+2)^{2k-1}}{k \cdot 7^k}$$
;

$$\Gamma) \sum_{k=1}^{\infty} \frac{(x-2)^k}{k\sqrt{k+1}} \, .$$

Примеры оформления решения

1 Найти радиус сходимости ряда $\sum_{k=0}^{\infty} k! x^k$.

Решение. Имеем:

$$R = \lim_{k \to \infty} \frac{k!}{(k+1)!} = 0.$$

Значит, ряд сходится в единственной точке x = 0.

2 Найти область сходимости ряда $\sum_{k=1}^{\infty} \frac{(x-3)^k}{k \cdot 5^k}$.

Решение. Имеем:

$$R = \lim_{k \to \infty} \frac{\frac{1}{k \cdot 5^k}}{\frac{1}{(k+1) \cdot 5^{k+1}}} = 5.$$

Значит, интервал сходимости -5 < x-3 < 5 или -2 < x < 8. В точке x=-2 получаем условно сходящийся ряд $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$, а в точке x=8 — расходящийся гармонический ряд $\sum_{k=1}^{\infty} \frac{1}{k}$. Таким образом, область сходимости ряда есть полуинтервал [-2;8).

3 Найти сумму ряда $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$.

Решение. Рассмотрим ряд

$$\sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - \dots + (-1)^k x^{2k} + \dots,$$

полученный почленным дифференцированием исходного ряда. Так как члены этого ряда образуют геометрическую прогрессию со знаменателем $\left(-x^2\right)$, то его сумма $S(x) = \frac{1}{1+x^2}$, если |x| < 1.

Интегрируя ряд $\sum_{k=0}^{\infty} (-1)^k x^{2k}$ почленно на отрезке $[0;x] \subset (-1;1)$, получаем:

$$\operatorname{arctg} x = \int_{0}^{x} \frac{dt}{1+t^{2}} = \int_{0}^{x} \sum_{k=0}^{\infty} (-1)^{k} t^{2k} dt = \sum_{k=0}^{\infty} (-1)^{k} \int_{0}^{x} t^{2k} dt = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1}$$

Следовательно,

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = \operatorname{arctg} x , |x| < 1.$$

Таким образом, функция $y = \arctan x$ является суммой исходного ряда.

Тема 5 Ряд Тейлора

1 Разложить в ряд Маклорена функции:

a)
$$f(x) = 4^x$$
;

$$\Gamma$$
) $f(x) = \sinh^2 x$;

6)
$$f(x) = \sqrt{1-x}$$
;

д)
$$f(x) = \operatorname{tg} x$$
;

$$B) f(x) = \ln(2+x);$$

e)
$$f(x) = (1+x)e^{-x^2}$$
.

2 Вычислить с точностью 0,0001 значение функций:

a)
$$\sqrt{24}$$
;

д)
$$\sqrt[3]{e}$$
;

e)
$$\sqrt[4]{17}$$
.

3 Найти:

4 С точность до 0,0001 вычислить определенные интегралы:

a)
$$\int_{0}^{\frac{1}{2}} \frac{\sin x}{x} dx$$
;
B) $\int_{0}^{\frac{1}{3}} \sqrt{1 + x^{4}} dx$;
6) $\int_{0}^{1} \cos^{3} x dx$;
r) $\int_{0}^{0,1} \frac{e^{x} - 1}{x} dx$.

5 Найти решение дифференциального уравнения, удовлетворяющего указанным условиям:

a)
$$y'x + y + 2 = 0$$
, $y(1) = 2$;

6)
$$y'(x-3)+y=0$$
, $y(-6)=-6$;

B)
$$y' - y = e^x$$
, $y(0) = 1$;

r)
$$y'' = 2x - \sinh x$$
, $y(0) = 0$, $y'(0) = 0$.

Примеры оформления решения

1 Разложить функцию $f(x) = 2^x$ в степенной ряд.

 $P\,e\, w\,e\, h\, u\, e$. Найдем значение функции и ее производных в точке x=0 :

Так как $0 < \ln 2 < 1$, то при фиксированном x имеет место неравенство

$$\left| f^{(n)}(x) \right| < 2^x$$

при любом n. Следовательно, функция может быть представлена в виде суммы ряда Тейлора

$$2^{x} = 1 + x \cdot \ln 2 + \frac{x^{2} \cdot \ln^{2} 2}{2!} + \frac{x^{3} \cdot \ln^{3} 2}{3!} + \dots$$

2 Разложить функцию $f(x) = \sin^2 x$ в степенной ряд.

Pe ue нue. Функцию $f(x) = \sin^2 x$ можно записать в виде

$$f(x) = \sin^2 x = \frac{1}{2}(1 - \cos 2x).$$

Заменим $\cos 2x$ его разложением в ряд Маклорена

$$\cos 2x = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + \dots =$$

$$= 1 - \frac{4x^2}{2!} + \frac{2^4 x^4}{4!} - \dots + (-1)^n \frac{2^{2n} x^{2n}}{(2n)!} + \dots$$

Подставляя, получим

$$\sin^2 x = \frac{1}{2} \left(1 - \cos 2x \right) = \frac{1}{2} \left(1 - \left(1 - \frac{4x^2}{2!} + \frac{2^4 x^4}{4!} - \dots + \left(-1 \right)^n \frac{2^{2n} x^{2n}}{(2n)!} + \dots \right) \right) =$$

$$= \frac{2x^2}{2!} + \frac{2^3 x^4}{4!} - \dots + \left(-1 \right)^n \frac{2^{2n-1} x^{2n}}{(2n)!} + \dots$$

3 Разложить функцию $f(x) = e^{-x^2}$ в степенной ряд. $Pe \ me \ nue$. В разложении

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

заменим x на $\left(-x^2\right)$. Получим

$$e^{-x^2} = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \frac{x^6}{6!} + \dots + (-1)^{n-1} \frac{x^n}{n!} + \dots, \ \forall \ x \in \square$$

4 Разложить функцию $f(x) = \ln x$ в степенной ряд по степеням (x-1).

 $Pe \, ue \, ue \, ue \, .$ В разложении $\forall x \in (-1;1)$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

заменим x на (x-1). Получим $\forall x \in (0;2)$

$$\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots$$

5 Разложить функцию $f(x) = \frac{1}{x}$ в степенной ряд по степеням (x-2).

Решение. Воспользуемся равенством

$$\frac{1}{x} = \frac{\frac{1}{2}}{1 + \frac{x - 2}{2}}.$$

Правую часть можно рассматривать как сумму бесконечно убывающей прогрессии с первым членом $a_1=\frac{1}{2}$ и и знаменателем $q=-\frac{x-2}{2}$.

Отсюда получаем

$$\frac{1}{x} = \frac{1}{2} - \frac{1}{2} \cdot \frac{x-2}{2} + \frac{1}{2} \cdot \left(\frac{x-2}{2}\right)^2 - \frac{1}{2} \cdot \left(\frac{x-2}{2}\right)^3 + \dots,$$

Тогда

$$\frac{1}{x} = \frac{1}{2} - \frac{x-2}{4} + \frac{(x-2)^2}{8} - \frac{(x-2)^3}{16} + \dots$$

Поскольку ряд сходится при $\left| \frac{x-2}{2} \right| < 1$, то разложение имеет место для всех x, удовлетворяющих неравенству 0 < x < 4.

6 Разложить по целым неотрицательным степеням переменной x до члена с x^3 функцию

$$f(x) = \sqrt{1 - 2x + x^3} - \sqrt[3]{1 - 3x + x^2}.$$

 $Pe \, we \, hu \, e$. Используем разложение $\forall x \in (-1;1)$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{a(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!}x^n + \dots$$

для разложения функций

$$f_1(x) = (1 + x^3 - 2x)^{\frac{1}{2}} \text{ M } f_2(x) = (1 + x^2 - 3x)^{\frac{1}{3}}.$$

Для первой функции имеем

$$f_{1}(x) = \left(1 + \left(x^{3} - 2x\right)\right)^{\frac{1}{2}} = 1 + \frac{1}{2}\left(x^{3} - 2x\right) + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2!}\left(x^{3} - 2x\right)^{2} + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}{3!}\left(x^{3} - 2x\right)^{3} + o\left(\left(x^{3} - 2x\right)^{3}\right) = 1 - x + \frac{1}{2}x^{3} - \frac{1}{2}x^{2} + o\left(x^{3}\right),$$

так как $o(x^3 - 2x) = o(x^3)$.

Для второй функции аналогично получим

$$f_{2}(x) = \left(1 + \left(x^{2} - 3x\right)\right)^{\frac{1}{3}} = 1 + \frac{1}{3}\left(x^{2} - 3x\right) + \frac{\frac{1}{3}\left(\frac{1}{3} - 1\right)}{2!}\left(x^{2} - 3x\right)^{2} + \frac{\frac{1}{3}\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)}{3!}\left(x^{2} - 3x\right)^{3} + o\left(x^{3}\right) =$$

$$= 1 - \frac{1}{3}x^{2} - x + \frac{2}{3}x^{3} + o\left(x^{3}\right) = 1 - x - \frac{1}{3}x^{2} + \frac{2}{3}x^{3} + o\left(x^{3}\right).$$
Тогда
$$f(x) = f_{1}(x) - f_{2}(x) =$$

$$= 1 - x + \frac{1}{2}x^{3} - \frac{1}{2}x^{2} + o\left(x^{3}\right) - \left(1 - x - \frac{1}{3}x^{2} + \frac{2}{3}x^{3} + o\left(x^{3}\right)\right) =$$

$$= \frac{1}{6}x^{2} + x^{3} + o\left(x^{3}\right)$$

(воспользовались тем, что $o(x^3) - o(x^3) = o(x^3)$).

7 Вычислить с точностью $\varepsilon = 0.01$ число e .

Решение. Так как

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{n}}{k!} + R_{n}(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \frac{e^{\xi}}{(n+1)!} x^{n+1}, \ 0 < \xi < x, \ \forall x \in \square,$$

то из оценки

$$|R_n(1)| = \frac{e^{\xi}}{(n+1)!} < \frac{3}{(n+1)!} \le 0.01$$

следует, что $\,n \geq 5\,$, т. е. $\,n_0 = 5\,$. Полагая $\,x_0 = 1\,$, $\,x_1 = 0\,$, получим

$$e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} \approx 2 + 0,500 + 0,167 + 0,042 + 0,008 = 2,717$$
.

8 Найти
$$\lim_{x\to 0} \frac{2e^x - 2 - 2x - x^2}{x - \sin x}$$
.

 $Pe\, w\, e\, h\, u\, e\, .$ Заменим e^x и $\sin x$ их разложением в ряд Маклорена

$$\lim_{x \to 0} \frac{2e^x - 2 - 2x - x^2}{x - \sin x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{2\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots\right) - 2 - 2x - x^2}{x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right)} =$$

$$= \lim_{x \to 0} \frac{\frac{2x^3}{3!} + \frac{2x^4}{4!} \dots + }{\frac{x^3}{3!} - \frac{x^5}{5!} + \dots} = \lim_{x \to 0} \frac{\frac{x^3}{3!} + \frac{2x}{4!} \dots + }{\frac{1}{3!} - \frac{x^2}{5!} + \dots} = 2.$$

9 Вычислить $\int_{0}^{1/3} e^{-x^2} dx$ с точностью $\varepsilon = 0{,}001$.

$$P e m e n u e$$
. Имеем $\forall x \in \Box$ $e^{-x^2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}$

Тогда

$$\int_{0}^{1/3} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{n!} \int_{0}^{1/3} x^{2n} dx = \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{n! \left(2n+1\right)} \left(\frac{1}{3}\right)^{2n+1}.$$

Отсюда

$$|r_n| \le \frac{1}{(n+1)!(2n+3)3^{2n+3}} \le 0,001 \implies n \ge 1 \implies n_0 = 1$$

$$\int_0^{1/3} e^{-x^2} dx \approx \frac{1}{3} - \frac{1}{3 \cdot 3^3} \approx 0,3333 - 0,0123 = 0,3210.$$

Окончательно получаем $\int\limits_0^{1/3} e^{-x^2} dx \approx 0{,}321$ с точностью $\varepsilon=0{,}001$.

10 Найти решение уравнения $yy' = \sin y$, удовлетворяющее начальному условию $y(0) = \frac{\pi}{2}$.

 $Pe\, m\, e\, H\, u\, e\, .$ Уравнение $yy'=\sin y$ допускает разделение переменных:

$$\frac{ydy}{\sin y} = dx.$$

Однако интеграл от левой части уравнения не выражается в элементарных функциях. В окрестности $x_0=0$ уравнение удовлетворяет условиям теоремы о существовании и единственности решения задачи Коши. Будем искать его в виде ряда Маклорена

$$y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^n$$
.

Так как $y(0) = \frac{\pi}{2}$ и $y' = \frac{\sin y}{y}$, то $y'(0) = \frac{2}{\pi}$. Дифференцируя

по x обе части равенства $y' = \frac{\sin y}{y}$, находим

$$y'' = \frac{(y'\cos y)y - y'\sin y}{y^2} = \frac{y'(y\cos y - \sin y)}{y^2}.$$

Откуда
$$y''(0) = \frac{-y'(0)\sin(\pi/2)}{(\pi/2)^2} = -\left(\frac{2}{\pi}\right)^3$$
. Дифференцируя обе

части найденного равенства для y'', находим y'''(0). Продолжая этот процесс, можно получить любое число членов разложения в ряд Маклорена искомого решения y = y(x):

$$y = \frac{\pi}{2} + \frac{2}{\pi}x - \frac{2^2}{\pi^3}x^2 + \dots$$

Задания к контрольным работам

Контрольная работа по разделу «Теория пределов»Вариант 1

1 Найти $\max X$, $\min X$, $\sup X$, $\inf X$ числового множества $X = \big\{x \in Q : \big|x\big| \le 2\big\}.$

- 2 Найти все значения корня и изобразить их в комплексной плоскости числа $\sqrt[7]{3-3\sqrt{3}i}$.
 - 3 Вычислить $\lim_{n\to\infty} \frac{(2n+1)!+(2n+2)!}{(2n+3)!}$.
 - 4 Вычислить пределы

a)
$$\lim_{x\to 8} \frac{\sqrt{9+2x}-5}{x-8}$$
, 6) $\lim_{x\to 0} \frac{\cos x-1}{x\sin 5x}$, B) $\lim_{x\to \infty} \left(1+\frac{1}{2x+1}\right)^{x-1}$.

5 Исследовать функцию на непрерывность

$$f(x) = \begin{cases} |x| - 1 \text{ при } x \le -1, \\ x^2 \text{ при } x > -1. \end{cases}$$
Вариант 2

- 1 Найти $\max X$, $\min X$, $\sup X$, $\inf X$ числового множества $X = \big\{x \in Q: |x| \geq 3\big\}.$
- 2 Найти все значения корня и изобразить их в комплексной плоскости числа $\sqrt[3]{2-2i}$.
 - 3 Вычислить $\lim_{n\to\infty} \frac{1+2+3+...+n}{\sqrt{9n^4+1}}$.
 - 4 Вычислить пределы:
 - a) $\lim_{x \to \infty} \left(\sqrt{x^2 + 4x 1} x \right)$; 6) $\lim_{x \to 0} \frac{\sin^2 3x}{x \sin 9x}$; B) $\lim_{x \to \infty} \left(1 + \frac{1}{5x + 1} \right)^{x 1}$.
 - 5 Исследовать функцию на непрерывность

$$f(x) = \begin{cases} -2|x| & \text{при } x \le -1, \\ x^2 + 1 & \text{при } x \ge -1. \end{cases}$$

Контрольная работа по разделу «Дифференциальное исчисление функции действительной переменной»

Вариант 1

1 Найти производные данных функций:

a)
$$y = \arcsin x^2$$
, 6) $y = (x-5)^2 \cdot e^{x^2-3}$, B) $y = \frac{\sin(x+6)}{x^2+5}$.

2 Найти производную неявной функции и функции, заданной параметрическими уравнениями

a)
$$\sin(y^2) = x^2 + y^3$$
; 6) $x = \sqrt{t^3 - 1}$, $y = \arctan(t + 1)$.

3 Найти производную функции с помощью логарифмической производной:

a)
$$y = (\operatorname{tg} x)^{\cos x + x}$$
, 6) $y = \frac{(x-5)^2}{\sin^3 x}$.

4 Написать разложение функции y = f(x) в ряд Маклорена по степеням переменной x до членов порядка n включительно $y = x^2 \cdot e^{x+1}$, n = 4.

5 Провести полное исследование и построить график функции:

a)
$$y = \frac{x^2 - 4}{x^2 - 1}$$
; 6) $x = t^3 + 2t^2 + t$, $y = -2 + 3t - t^3$.

6 Частица движется с постоянной по величине скоростью v по кривой $y=x^3$. Найдите величину ускорения частицы в момент, когда x=0 .

Вариант 2

1 Найти производные данных функций:

a)
$$y = \arcsin(\ln^2 x)$$
, 6) $y = \cos x^2 \cdot \ln(tg x)$, B) $y = \frac{\sqrt[3]{x-4}}{\arccos x}$.

2 Найти производную неявной функции и функции, заданной параметрическими уравнениями

a)
$$\sqrt{y+1} = \ln(x-y) + y$$
, 6) $x = \sqrt[3]{t^2 - 1}$, $y = \arctan t + t^2$.

3 Найти производную функции с помощью логарифмической производной:

a)
$$y = (\sin x)^{\cos x}$$
, 6) $y = \frac{(x^5 - x)^4}{\sqrt[5]{x + 3}}$.

4 Написать разложение функции y = f(x) в ряд Маклорена по степеням переменной x до членов порядка n включительно: $y = \sin(x+1), n=3.$

5 Провести полное исследование и построить график функции:

a)
$$y = \frac{4x^2 - 1}{3 + 2x + x^2}$$
; 6) $x = \sin 2t$, $y = \sin 3t$.

6 На прямой между двумя источниками света силы F и 8Fнайти наименее освещенную точку, если расстояние между источниками равно 24 м (освещенность прямо пропорциональна силе света источника и обратно пропорциональна квадрату расстояния до него).

Контрольная работа по разделу «Интегральное исчисление функции действительной переменной»

Вариант 1

1 Найти неопределенные интегралы:

a)
$$\int \frac{4\sqrt[3]{x} + x^2 \sqrt{x} - 5}{\sqrt[4]{x}} dx$$
; 6) $\int \frac{(3\sin x - 2\cos)dx}{1 + \cos x}$;

$$6) \int \frac{(3\sin x - 2\cos)dx}{1 + \cos x}$$

$$\mathbf{B}) \int_{0}^{3} \sqrt{x+5} dx;$$

$$\Gamma) \int \frac{dx}{(5x-2)^3};$$

$$д) \int \frac{(2x+5)dx}{x^2+6x+3};$$

e)
$$\int \frac{dx}{\sqrt{x^2-4x+2}}$$
;

ж)
$$\int (5x+2)\sin(x-3)dx;$$

$$\mathrm{H})\int \frac{dx}{x\sqrt{1+x^2}};$$

к)
$$\int \frac{dx}{(x+1)(x+2)(x+3)^2}$$
; л) $\int \frac{dx}{2x+5}$;

$$\pi$$
) $\int \frac{dx}{2x+5}$

M)
$$\int \frac{e^x + e^{3x}}{1 - e^{2x} + e^{4x}} dx$$
;

$$H) \int x^2 f''((2x+1)^3) dx.$$

2 Вычислить
$$\frac{d}{dx} \int_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^2}}$$
.

3 Вычислить интегралы:

a)
$$\int_{0}^{2\pi} \sin^4 x \cos^4 x \, dx$$
;

B)
$$\int_{3}^{+\infty} \frac{2x+5}{x^2+3x-10} dx$$
;

6)
$$\int_{0}^{2} \frac{x^{2} dx}{\sqrt{16 - x^{2}}}$$
;

$$\Gamma) \int_{0}^{1} \frac{dx}{\sqrt[3]{x-1}}.$$

- 4 Найти длину дуги кривой $y = \sin^4 t$, $y = \cos^2 t$, $x \in \left[0, \frac{\pi}{2}\right]$.
- 5 Найти координаты центра масс и моменты инерции фигуры, ограниченной кривыми $x^2 + y^2 = 4$, $x \ge 0$, $y \ge 0$.
- 6 Вычислить несобственный интеграл (или установить его расходимость) $\int_{-\infty}^{+\infty} \frac{dx}{x\sqrt{\ln x}}$.

Вариант 2

1 Найти неопределенные интегралы:

a)
$$\int \frac{1+2\sqrt{x}-2x+\sqrt[3]{x^4}}{x^2} dx$$
; 6) $\int \sin(7x-1)dx$;

$$\mathbf{B}) \int \sqrt[4]{5x-3} dx;$$

$$\Gamma) \int \frac{dx}{(3x-1)^5};$$

$$Д) \int \frac{x \, dx}{x^2 + 4x + 5};$$

e)
$$\int \frac{dx}{\sqrt{x^2-6x+7}}$$
;

ж)
$$\int \sin(2x-7)e^{-4x+5}dx$$

ж)
$$\int \sin(2x-7)e^{-4x+5}dx$$
; и) $\int \frac{x^3+x+2}{(x-3)(x-4)}dx$;

к)
$$\int \frac{dx}{(x-1)\sqrt{x^2+x-1}}$$
; π) $\int \frac{dx}{-4\cos x + 3\sin x}$;

$$\int \frac{dx}{-4\cos x + 3\sin x}$$

M)
$$\int \sqrt{x} \operatorname{arcctg} \sqrt{x} \, dx$$
; H) $\int x^2 f'(x^3) dx$.

$$\mathrm{H}) \int x^2 f'(x^3) dx$$

$$2$$
 Вычислить $\lim_{x o +0} \frac{\int\limits_{\log x}^{\sin x} \sqrt{\lg t} \, dt}{\int\limits_{0}^{\lg x} \sqrt{\sin t} \, dt}$.

3 Вычислить интегралы:

a)
$$\int_{0}^{\pi} 2^{8} \sin^{6} x \cos^{2} x \, dx$$
;
b) $\int_{0}^{+\infty} \frac{x dx}{(x+1)^{3}}$;
6) $\int_{0}^{1} x^{2} \sqrt{1-x^{2}} \, dx$;
r) $\int_{0}^{1} \frac{dx}{1-x^{2}}$.

$$B) \int_{0}^{+\infty} \frac{x dx}{\left(x+1\right)^3}$$

6)
$$\int_{0}^{1} x^{2} \sqrt{1-x^{2}} dx$$

$$\Gamma) \int_{0}^{1} \frac{dx}{1-x^{2}}.$$

- 4 Найти длину дуги кривой $r = \sin^3 \frac{\varphi}{3}$, $\varphi \in \left[0, \frac{\pi}{2}\right]$.
- 5 Найти координаты центра масс и моменты инерции фигуры, ограниченной кривыми $y = x^3$, x + y = 1, x = 0.
- 6 Вычислить несобственный интеграл (или установить его расходимость) $\int \frac{dx}{(2-x)\sqrt{1-x}}$

Контрольная работа по разделу «Теория рядов»

Вариант 1

1 Исследовать сходимость рядов с неотрицательными членами:

a)
$$\sum_{k=1}^{\infty} \frac{k+1}{2^k (k-1)!}$$
, 6) $\sum_{k=1}^{\infty} \left(\frac{k+1}{3k-4}\right)^{k-2}$, b) $\sum_{k=1}^{\infty} \frac{1}{k \ln(3k)}$.

- 2 Исследовать сходимость рядов. В случае сходимости ряда, вычислить его сумму с точностью α : $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^{k^2}+1}$, $\alpha=0.01$.
 - 3 Найти область сходимости функционального ряда $\sum_{k=0}^{\infty} 3^{k^2} x^{k^2}$.

Вариант2

1 Исследовать сходимость рядов с неотрицательными членами:

a)
$$\sum_{k=1}^{\infty} \frac{k^2}{(2k+1)!}$$
, 6) $\sum_{k=1}^{\infty} \left(\frac{2k}{4k-1}\right)^{2k+3}$, b) $\sum_{k=1}^{\infty} \frac{1}{(k+2)\ln^2(k+2)}$.

2 Исследовать сходимость рядов. В случае сходимости ряда, вычислить его сумму с точностью α : $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!}$, $\alpha = 0.01$.

 $\frac{3}{\sum_{k=1}^{\infty}} \frac{\left(x-5\right)^k}{3k+8}$.

Тестовые задания

Вариант 1

Часть А		
	Задание	Варианты ответов
1	Вычислить модуль и аргумент комплексного числа $z = 5 + 5i$	a) $ z = 5\sqrt{2}$, arg $z = \frac{\pi}{4}$;
		6) $ z = 5$, arg $z = \frac{\pi}{4}$;
		B) $ z = 5\sqrt{2}$, $\arg z = \frac{3\pi}{4}$;
		$ \Gamma\rangle z = 5\sqrt{2} , \text{ arg } z = -\frac{\pi}{4}$
2	Найти $\inf A$. $\sup A$ для	a) $\sup A = 2$, $\inf A = -2$;
	множества	6) $\sup A = \sqrt{2}$, $\inf A = -\sqrt{2}$;
	$A = \left\{ x \mid x^2 < 2, x \in \square \right\}$	B) $\sup A = \sqrt{2}$, $\inf A = 0$;
		г) другой ответ.
3	Вычислить предел последовательности	a) ∞ ; 6) $\frac{1}{2}$; B) 1; r) 0.
	$\lim_{n\to\infty} \frac{n+1}{\sqrt{n^2+2n}}$	
4	Вычислить предел функции $\lim_{x\to 0} \frac{\operatorname{tg} 4x}{\sin x}$	a) 4; 6) $\frac{1}{4}$; B) ∞ ; Γ) 1.
5	Вычислить $f'(-3)$ функции	а) 0; б) 1; в) -2; г) 2.
	f(x) = (x+1)(x+2)(x+3)(x+4)	
6	Вычислить $y'(0)$ функции	а) 0; б) 3; в) 1; г) 2.
	$y^2 + x^2 - 6xy - 10 = 0.$	
7	Вычислить интеграл $\int \frac{dx}{x \ln^2 x}$	a) $\frac{1}{\ln x} + C$; 6) $-\frac{1}{\ln x}$;
8	Интеграл $\int_{-\infty}^{+\infty} x \cos x dx$	в) $-\frac{1}{\ln x} + C$; г), $-\frac{1}{\ln^3 x} + C$ а) абсолютно сходится; б) сходится в смысле главного значения;

9	Найти область сходимости	a) (0;1); 6) (-1;1);
	степенного ряда $\sum_{k=1}^{\infty} \frac{x^k}{k}$	в) [-1;1); г) [-1;0).
10	Найти 3 S , где S — площадь фигуры, ограниченной линиями $y = x^2 - 6x + 8$, $y = 0$	а) -4; б) 4; в) 12; г) 8.
Часть В		
1	Решить уравнение $z^2 = \frac{1-i}{\sqrt{2}}$.	
2	Является ли при $x \to \infty$ функция $f(x) = \frac{\text{sign}(\cos x)}{x - \pi/2}$ бесконечно малой?	
3	Является ли непрерывной функция $f(x) = \begin{cases} (1+x)^{\frac{1}{2x}} & \text{при } x \neq 0, \\ \sqrt{e} & \text{при } x \neq 0. \end{cases}$ Найти $\max y(x)$ и $\min y(x)$ функции $y(x)$, заданной	
4	параметрическими уравнениями $x(t) = \frac{1}{t(t+1)}$, $y(t) = \frac{(t+1)^2}{t}$ при	
5	$\frac{t>0}{9}$ Является ли сходящимся ряд $\sum_{k=1}^{\infty} \frac{3^k + k!}{(k+1)!}$?	
6	Найти 3-ий коэффициент в разложении функции в ряд Маклорена функции $f(x) = x^2 \cos 2x$.	
7	Найти длину кривой $x = 3\cos t$, y	$=3\sin t$,
8	Укажите верные утверждения: а) если функция $f(x)+g(x)$ имеет в точке x_0 предел. То функции $f(x)$ и $g(x)$ также имеют предел в точке x_0 ; б) если функция $f(x)$ имеет производную в точке x_0 , то угловой коэффициент касательной к графику этой функции в точке x_0 равен $f'(x_0)$; в) любая ограниченная на $[a;b]$ функция, интегрируема на этом отрезке;	

Укажите не верное утверждение:

a)
$$d^2y = y''(x)dx$$
;

6)
$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x : 0 < |x - x_0| < \delta \Rightarrow |f(x)| > \varepsilon;$$

9 B)
$$\left(\int_{a}^{x} f(t)dt\right)' = f(x);$$

г) ряд $\sum_{k=1}^{\infty} a_k \sin k\alpha$ сходится, если последовательность (a_k) монотонно убывает.

Вариант 2

Часть А		
	Задание	Варианты ответов
1	Вычислить модуль и аргумент комплексного числа $z = \sqrt{3} - i$	a) $ z = \sqrt{2}$, $\arg z = -\frac{\pi}{6}$; 6) $ z = 2$, $\arg z = -\frac{\pi}{6}$;
		B) $ z = 2$, $\arg z = \frac{7\pi}{6}$; r) $ z = -2$, $\arg z = -\frac{\pi}{6}$.
2	Найти inf A . $\sup A$ для множества $A = \left\{ x \mid x = \frac{1}{n}, n \in \Box \setminus \{0\} \right\}$	a) $\sup A = \infty$, $\inf A = -\infty$; б) $\sup A = 1$, $\inf A = -1$; в) $\sup A = 1$, $\inf A = 0$; г) другой ответ.
3	Вычислить предел последовательности $\lim_{n \to \infty} \frac{\sqrt[3]{n^3 + 10}}{\sqrt[3]{n^3 + 10}}$	a) ∞ ; 6) $\frac{1}{2}$; B) 1; Γ) 0.
4	Въбчиелить предел функции $\lim_{x\to 0} \frac{\arctan x}{\sin 3x}$	a) 3; 6) $\frac{1}{3}$; B) ∞ ; r) 1.
5	Вычислить $f'\left(\frac{\pi}{2}\right)$ функции $f(x) = \sin x \sin 2x \sin 4x$	а) 0; б) 1; в) -1; г) 2.
	$\int (\lambda) - \sin \lambda \sin 2\lambda \sin 4\lambda$	

6	Вычислить $y'(0)$ функции	а) 0; б) 3; в) 15; г) 1.
	$x^2 - 4xy + 4y + 4x - 16 = 0.$	
7	Вычислить интеграл $\int \frac{\sin x dx}{\cos^2 x}$	a) $\frac{1}{\cos x} + C$; 6) $-\frac{1}{\cos x} + C$; B) $-\frac{3}{\cos x} + C$; Γ) $\frac{3}{\cos x} + C$.
8	Интеграл $\int_{-1}^{0} \frac{dx}{\sqrt{-x}}$	а) абсолютно сходится; б) сходится условно; в) равен 1; г) сходится.
9	Найти область сходимости	a) (0;1); б) [-1;1];
	степенного ряда $\sum_{k=1}^{\infty} \frac{x^k}{k^2}$	в) [-1;1); г) [-1;0).
10	Найти $3S$, где S — площадь	а) -32; б) 16; в) 8; г) 32.
	фигуры, ограниченной	
	линиями $x = 4 - x^2$, $x = 0$	
	Часть 1	3
1	Решить уравнение $z^2 = \frac{1+i}{\sqrt{2}}$.	
2	Является ли при $x \to \infty$ функция $f(x) = \frac{1}{x + 2^x}$ бесконечно малой?	
3	Является ли непрерывной функция $f(x) = \begin{cases} (1+2x)^{\frac{1}{x}} & \text{при } x \neq 0, \\ e & \text{при } x \neq 0. \end{cases}$ Найти $\max y(x)$ и $\min y(x)$ функции $y(x)$, заданной	
Найти $\max y(x)$ и $\min y(x)$ функции $y(x)$, зада		функции $y(x)$, заданной
4	параметрическими уравнениями $x(t) = \ln\left(\sin\frac{t}{2}\right)$, $y(t) = \ln\left(\sin t\right)$	
5	Является ли сходящимся ряд $\sum_{k=1}^{\infty} \left(\frac{n-1}{2n+1} \right)^{n^2}$?	
6	Найти 3-ий коэффициент в разложении функции в ряд	
	Маклорена функции $f(x) = x \sin^2 x$. Найти длину кривой $r = 2(1 + \cos \varphi)$.	
7	паити длину кривои $r = 2(1 + \cos q)$?)·

Укажите верные у	утверждения:
------------------	--------------

- а) если функция $f(x) \cdot g(x)$ имеет в точке x_0 предел. То функции f(x) и g(x) также имеют предел в точке x_0 ;
- 8 б) если функция f(x) непрерывна в точке x_0 , то она имеет производную в этой точке;
 - в) если функция f(x) непрерывна на [a;b], то она интегрируема на этом отрезке;
 - г) если функциональный ряд сходится, то он сходится

Укажите не верное утверждение:

- a) $d^3y = y'''(x)dx$;
- 6) $\lim_{x \to x_0} f(x) = +\infty \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x : |x x_0| < \delta \implies f(x) > \varepsilon$;
- 9 B) $\int_{a}^{b} f(x)dx = F(b) F(a)$;
 - г) ряд $\sum_{k=1}^{\infty} (-1)^k a_k$ сходится, если последовательность (a_k) монотонно убывает.

Примерный перечень вопросов к экзамену

(* отмечены вопросы, содержащие теорему с доказательством)

- 1 *Верхняя и нижняя грани числового множества.
- 2 *Лемма о вложенных отрезках.
- 3 Числовые последовательности, ограниченные и неограниченные последовательности.
 - 4 *Бесконечно-малые последовательности и их свойства.
- 5 Бесконечно-большие последовательности и их связь с бесконечно малыми.
 - 6 Сходящиеся последовательности и их свойства.
 - 7 Предельный переход в неравенствах.
- 8 *Теорема Вейерштрасса сходимости монотонной ограниченной последовательности.
 - 9 *Число е.
 - 10 Подпоследовательности и принцип выбора.
 - 11 *Фундаментальные последовательности, критерий Коши.
- 12 *Определение предела функции по Гейне и по Коши и их эквивалентность.
 - 13 Односторонние пределы.
 - 14 *Первый замечательный предел.
 - 15 *Второй замечательный предел.
- 16 Бесконечно-малые функции, сравнение бесконечно-малых функций.
 - 17 Непрерывность функции, классификация точек разрыва.
 - 18 *Теорема об устойчивости знака непрерывной функции.
- 19 *Теорема Больцано-Коши о прохождении непрерывной функции через любое промежуточное значение.
- 20 *Теорема Вейерштрасса об ограниченности непрерывной функции на отрезке.
 - 21 Равномерная непрерывность функции, теорема Кантора.
 - 22 Сложная функция непрерывность сложной функции.
 - 23 Обратная функция и непрерывность обратной функции.
- 24 Определение производной, геометрический и физический смысл производной.
 - 25 *Дифференцируемость функции в точке.
 - 26 Определение и геометрический смысл дифференциала.
 - 27 *Производная обратной и сложной функции.
 - 28 Производная и дифференциалы высших порядков.
 - 29 *Теорема Ферма.
 - 30 *Теорема Ролля.

- 31 *Теорема Лагранжа.
- 32 *Теорема Коши (обобщённая формула конечных приращений).
 - 33 *Правило Лопиталя.
 - 34 *Теорема Тейлора.
- 35 Локальные экстремумы функции и необходимое условие локального экстремума.
- 36 Локальные экстремумы функции и достаточные условия экстремума.
 - 37 *Выпуклость и вогнутость функции.
- 38 *Точки перегиба функции, необходимое и достаточное условие перегиба функции.
 - 39 Первообразная функции и ее свойства
 - 40 Неопределённый интеграл и его свойства.
 - 41 Основные методы интегрирования.
- 42 Интегральные суммы Дарбу, свойства верхних и нижних сумм Дарбу.
 - 43 Определённый интеграл Римана и его свойства.
 - 44 Существование определенного интеграла, критерий Дарбу.
- 45 *Теорема об интегрируемости непрерывной на отрезке функции.
- 46 *Теорема об интегрируемости монотонной на отрезке функции
 - 47 *Теорема о среднем.
- 48 Интеграл с переменным верхним пределом, его непрерывность и дифференцируемость.
 - 49 *Формула Ньютона-Лейбница.
 - 50 Замена переменной в определённом интеграле.
- 51 Формула интегрирования по частям в определённом интеграле.
 - 52 Несобственный интеграл с бесконечным верхним пределом.
 - 53 Несобственный интеграл от неограниченных функций.
 - 54 *Признак сравнения сходимости несобственного интеграла.
 - 55 Признаки сходимости несобственных интегралов.
 - 56 Числовой ряд, сходимость числового ряда.
 - 57 *Необходимое условие сходимости числового ряда.
 - 58 *Интегральный признак сходимости числового ряда.
 - 59 *Ряды с неотрицательными членами, признак сравнения.
 - 60 *Ряды с неотрицательными членами, признак Коши.
 - 61 *Ряды с неотрицательными членами, признак Даламбера.
 - 62 *Знакочередующийся ряд, признак Лейбница.

- 63 Абсолютная и условная сходимость знакопеременного числового ряда, признаки Дирихле и Абеля.
- 64 Функциональная последовательность, поточечная и равномерная сходимость.
- 65 Функциональный ряд, поточечная и равномерная сходимость.
- 66 *Признак Вейерштрасса равномерной сходимости функционального ряда.
- 67 Признаки Дирихле и Абеля равномерной сходимости функционального ряда.
 - 68 Свойства равномерно сходящихся функциональных рядов.
 - 69 *Степенные ряды, теорема Абеля.
 - 70 *Теорема Тейлора о разложении в ряд Тейлора.

Типовые задачи к экзамену

- 1 Исследовать ряд на сходимость $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 + 2}$.
- 2 Найти область сходимости функционального ряда $\sum_{k=0}^{\infty} \frac{1}{2^k} \bigg(\frac{x+2}{x-3} \bigg)^k \; .$
 - 3 Вычислить интеграл $\int \frac{dx}{x^2 2x + 5}$.
 - 4 Вычислить интеграл $\int\limits_{0}^{\frac{\pi}{4}}x\cos x\,dx\,.$
- 5 Найти радиус и интервал сходимости степенного ряда $\sum_{k=0}^{\infty} \frac{4^k}{k!} (x-1)^k \ .$
 - 6 Исследовать ряд на сходимость $\sum_{k=1}^{\infty} \frac{k!}{5^k}$.
 - 7 Вычислить интеграл $\int \frac{dx}{\sqrt{2x+3}}$.
 - 8 Вычислить предел $\lim_{x\to 0} \frac{\sin 7x \sin x}{x}$.
- 9 Найти радиус и интервал сходимости степенного ряда $\sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k x^k \ .$
 - 10 Вычислить интеграл $\int \operatorname{tg} x \, dx$.
 - 11 Вычислить интеграл $\int_{1}^{6} \sqrt{x+3} \, dx.$
 - 12 Вычислить интеграл $\int \frac{x^3 + 1}{x^2 1} dx$.
 - 13 Вычислить интеграл $\int \frac{dx}{\sqrt{x^2-4x+3}}$.
 - 14 Разложить функцию в ряд Маклорена $f(x) = \cos x^2$.

- 15 Исследовать ряд на сходимость $\sum_{1=1}^{\infty} \frac{3^{k+1}}{5^k}$.
- 16 Найти производную функции, заданной параметрическими уравнениями $\begin{cases} x = t^3 t, \\ y = t \cdot \sin t. \end{cases}$
 - 17 Вычислить предел $\lim_{x\to 0} \frac{\operatorname{tg} 4x}{x}$.
 - 18 Вычислить предел $\lim_{x\to 2} \frac{\sqrt{3x-2}-2}{x-2}$.
 - 19 Вычислить предел $\lim_{x\to\infty} \left(\frac{n-2}{n+4}\right)^{n+1}$.
 - 20 Вычислить предел $\lim_{x\to 0} \frac{\cos 3x \cos x}{x^2}$.
 - 21 Исследовать непрерывность функции

$$y = \begin{cases} x^2 & \text{при} \quad x < -1, \\ x+1 & \text{при} \quad -1 \le x \le 0, \\ -x^2 & \text{при} \quad x > 0. \end{cases}$$

- 22 Исследовать функцию на непрерывность $y = x + \frac{1}{x^2 4}$.
- 23 Вычислить предел $\lim_{x\to -3} \frac{x^2+x-6}{2x^2+6x+3}$
- 24 Найти производную функции $y = (x+1)^x$.
- 25 Найти асимптоты графика функции $y = 2x + \frac{3}{x^2 1}$.
- 26 Найти радиус и интервал сходимости степенного ряда $\sum_{k=0}^{\infty} \frac{x^k}{2^{2k}}$.
- 27 Найти производную функции, заданной неявно $\cos y + xy = \sin \left(x^2 1 \right)$.
 - 28 Разложить в ряд Маклорена функцию $y = e^{x^2}$.
- 29 Вычислить производную 2-го порядка функции $y=x^3+\left(x-2\right)^2\ln\left(x+1\right)$ в точке x=0 .

- 30 Найти производную функции, заданной параметрическими уравнениями $x = t \cdot \cos t$, $y = \sin t + t$.
 - 31 Исследовать функцию и построить график $y = \frac{x-1}{x+1}$.
 - 32 Вычислить несобственный интеграл $\int_{0}^{1} x \ln x \, dx$.
 - 33 Найти дифференциал функции $y = \frac{x^2 + 1}{\operatorname{arctg} x}$.
 - 34 Вычислить несобственный интеграл $\int_0^{+\infty} \frac{dx}{x^2 + 1}$.

Литература

Основная

- 1 Демидович, В. П. Сборник задач и упражнений по математическому анализу : учебное пособие для вузов / В. П. Демидович. М. : Наука, 1977.
- 2 Кудрявцев, Л. Д. Краткий курс математического анализа : учебник для вузов / Л. Д. Кудрявцев.— М. : Наука, Гл. ред. физ.-мат. лит., 1989.
- 3 Кудрявцев, Л. Д. Сборник задач по математическому анализу: учебное пособие для вузов: в 3 ч. Ч. 1. Предел. Непрерывность. Дифференцируемость / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. М.: Наука, Гл. ред. физ.-мат. лит., 1984.
- 4 Математический анализ в вопросах и задачах : учебное пособие для вузов / под ред. В. Ф. Бутузова. М. : Высш. шк., 1984.
- 5 Сборник индивидуальных заданий по высшей математике : учебное пособие для вузов: в 3 ч. Ч. 1 / под ред. А. П. Рябушко. Мн. : Выш. шк., 1991.
- 6 Тер-Крикоров, А. М. Курс математического анализа: учебное пособие для вузов / А. М. Тер-Крикоров, М. И. Шабунин М.: Наука Гл. ред. физ.-мат. Лит., 1988.

Дополнительная

- 1 Зверович, Э.И. Вещественный и комплексный анализ: учебное пособие для вузов: в 6 ч. Ч. 1. Введение в анализ и дифференциальное исчисление / Э. И. Зверович. Мн. : БГУ, 2003.
- 2 Зорич, В. А. Математический анализ: учебник для вузов: в 2 ч. Ч. 1. / В. А. Зорич. М. : Наука, 1981.
- 3 Ильин, В. А. Математический анализ: учебник для вузов / В. А. Ильин, [и др.]. М.: Наука, 1979.
- 4 Никольский, С. М. Курс математического анализа: учебник для вузов: в 2 т. Т. 1. / С. М. Никольский. М.: Наука, 1983.
- 5 Привалов, И. И. Введение в теорию функций комплексного переменного : учебное пособие для вузов / И. И. Привалов. М. : Наука, 1977.

Вопросы для самоконтроля

Определения

Что называется окрестностью точки z_0 ?

Дайте определение: а) предельной, б) внутренней, в) граничной точки множества $E \subset \square$.

Какое множество называется: а) открытым, б) замкнутым?

Какая функция называется комплекснозначной?

Какая кривая называется кривой Жордана?

Дайте определение связного множества.

Что называется областью комплексной плоскости?

Какая область называется: а) односвязной, б) многосвязной?

Какое направление обхода границы области называется положительным?

Сформулируйте определение числовой последовательности комплексных чисел.

Что называется пределом числовой последовательности комплексных чисел и какими свойствами он обладает?

Дайте определение функции комплексной переменной.

Какая функция называется: а) однозначной, б) многозначной, в) однолистной?

Как определяется действительная и мнимая части функции комплексной переменной?

Что называется пределом функции комплексной переменной?

Какая функция комплексной переменной называется непрерывной а) в точке, б) в области?

Какая функция называется равномерно-непрерывной?

Какие функции комплексной переменной называются элементарными?

Что называется производной функции f(z) в точке?

Какая функция называется дифференцируемой в точке?

Что называется дифференциалом функции комплексной переменной?

Какая функция называется аналитической: а) в точке, б) в области?

Какие функции называются гармоническими?

Какое отображение называется конформным?

Какое направление движения по кривой называется: а) положительным, б) отрицательным?

Что называется интегралом от функции комплексной переменной?

Что называется первообразной для функции комплексной переменной?

Дайте определение неопределенного интеграла для функции комплексной переменной и запишите формулу Ньютона-Лейбница.

Какой интеграл называется интегралом типа Коши?

Сформулируйте определение ряда комплексных чисел?

Какой ряд с комплексными числами называется абсолютно сходящимся?

Какой ряд называется функциональным рядом?

Что называется точкой сходимости и областью сходимости функционального ряда?

Какой функциональный ряд называется равномерно сходящимся? Какой ряд называется степенным?

Что называется: а) радиусом сходимости, б) кругом сходимости степенного ряда?

Какой ряд называется рядом Лорана?

Что называется областью сходимости ряда Лорана?

Какой ряд называется рядом Лорана в окрестности бесконечно удаленной точки?

Какая точка называется нулем функции? Что называется кратностью нуля?

Какая точка называется изолированной особой точкой?

Какая изолированная особая точка называется: а) устранимой, б) полюсом, в) существенно особой?

Что называется вычетом функции?

Что называется логарифмическим вычетом?

Формулировки теорем и формулы

Сформулируйте критерий Коши существования предела функции комплексной переменной.

Сформулируйте необходимое и достаточное условия дифференцируемости.

По каким формулам вычисляется производная функции комплексной переменной?

Сформулируйте критерий конформного отображения?

Сформулируйте принцип симметриии Римана-Шварца.

Сформулируйте и докажите основную теорему Коши для многосвязной области.

Перечислите свойства интеграла от функции комплексной переменной.

По какой формуле осуществляется замена переменной в интеграле от функции комплексной переменной?

Какими свойствами обладает интеграл типа Коши?

Сформулируйте теорему Коши-Лиувилля.

Перечислите основные свойства равномерно сходящихся функциональных рядов.

Доказательства теорем

Сформулируйте и докажите основную теорему Коши для односвязной области.

Сформулируйте и докажите теорему об интегральной формуле Коппи.

Сформулируйте и докажите теорему Тейлора.

Вопросы и задачи на понимание

Для каких функций выполняются условия Коши-Римана?

Является ли аналитическая функция гармонической?

В чем состоит геометрический смысл модуля производной?

В чем состоит геометрический смысл аргумента производной?

В чем состоит различие между конформным отображениями 1- и 2-го родов?

В чем суть теоремы Римана?

В чем состоит принцип соответствия границ?

Как связаны интеграл от функции комплексной переменной по кривой и криволинейный интеграл 2-го рода?

Для каких путей интегрирования целесообразна замена $z-z_0=re^{i\varphi}$?

В чем суть теоремы о среднем для функции комплексной переменной?

В чем состоит принцип максимума модуля аналитической функции?

В чем суть теоремы Морера?

Как исследовать ряд комплексных чисел на сходимость?

Какая сходимость функционального ряда сильнее: точечная или равномерная?

Когда можно почленно дифференцировать и интегрировать степенные ряды?

Как определяется ряд Тейлора для многозначных функций?

Как представима функция, имеющая нуль кратности $\,m\,?\,$

Как влияет характер изолированной особой точки на вид ряда Лорана?

Как определяется особенность в бесконечно удаленной точке?

Как вычисляется вычет относительно:

а) устранимой точки;

- б) простого полюса;
- в) полюса порядка m;
- г) существенно особой точки;
- д) бесконечно удаленной точки?

Как для мероморфной функции вычисляется логарифмический вычет по контуру

Как вычисляются интегралы по замкнутому контуру?

Как вычисляются несобственные интегралы?

Как вычисляются интегралы вида
$$\int_{0}^{2\pi} R(\sin x, \cos x) dx?$$

В чем суть леммы Жордана? Для каких интегралов она используется?

В каких случаях можно вычислить сумму ряда с помощью вычетов?

Учебное издание

Денисенко Тамара Андреевна Марченко Лариса Николаевна Парукевич Ирина Викторовна

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебно-методический комплекс

В трех частях

Часть 1

Функции действительной переменной. Ряды

В авторской редакции

Подписано в печать 20.03.08. (93) Бумага писчая №1. Формат $60x84\ 1/16$. Гарнитура Times New Roman. Усл. печ. л. 19,1. Уч-изд. л. 14,8. Тираж 25 экз.

Отпечатано в учреждении образования «Гомельский государственный университет имени Франциска Скорины» 246019, г. Гомель, ул. Советская, 104