ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО СПЕЦКУРСУ "МАТЕМАТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ОБРАБОТКИ СИГНАЛОВ"

Тема 3: Дискретная свертка и стационарные системы дискретного времени

Определение 1. Фильтром дискретного времени (сокращенно ДВ-фильтром) называется линейный оператор Φ , действующий в пространстве ДВ-сигналов.

Важный пример— оператор сдвига

$$Dx(n) := x(n-1).$$

Ниже $D^s x(n) := x(n-s)$. Будут использоваться также следующие обозначения:

$$\delta_k(n) = \begin{cases} 1, n = k, \\ 0, n \neq k, \end{cases}$$

$$u(n) = \begin{cases} 1, n \ge 0, \\ 0, n < 0, \end{cases}$$

 $u r(n) := n^{-1}u(n).$

Определение 2. ДВ-фильтр Φ называется *стационарным* (в другой терминологии ЛИВ-*системой*), если

- 1) Φ линейный ограниченный оператор в $l_2(\mathbb{Z})$;
- 2) Ф является инвариантным по времени, т. е. перестановочен со сдвигами: $\Phi(D^s x) = D^s(\Phi x)$ для каждого момента $s \in \mathbb{N}$ и каждого сигнала x.

Свойство 2) означает, что если Φ преобразует сигнал x(n) в y(n), то для каждого $s \in \mathbb{N}$ он преобразует сигнал x(n-s) в y(n-s).

Пример 1. Известно, что стационарный ДВ-фильтр Φ сигнал на входе $x_0(n) = u(n) - u(n-2)$ преобразует в сигнал на выходе $y_0(n) = 2r(n) - 2r(n-2)$. Каков будет сигнал на выходе, если сигнал на входе есть $x_1(n) = 2u(n+2) - 2u(n)$?

Решение. Заметим, что $x_1(n) = 2u(n+2) - 2u(n) = 2x_0(n+2)$. В силу линейности фильтра и свойства 2) на выходе будет сигнал $y_1(n) = 2y_0(n+2) = 4r(n+2) - 4r(n)$.

Определение 3. Свертка ДВ-сигналов f и h определяется следующим образом:

$$f * h(n) := \sum_{k \in \mathbb{Z}} f(k)h(n-k) \quad (n \in \mathbb{Z}),$$

если ряд сходится. В этом случае говорят, что сигналы f и h свертываемы.

Теорема 1. Если свертки существуют, то

- а) f * g = g * f (коммутативность свертки);
- б)f * (g + h) = f * g + f * h (дистрибутивность свертки).

Пример 2. Для любого ДВ-сигнала f вычислить свертку $f * \delta_l$.

Решение. Имеем по определению

$$f * \delta_l(n) = \sum_{k \in \mathbb{Z}} f(k) \delta_l(n-k) = f(n-l),$$

поскольку

$$\delta_l(n-k) = \begin{cases} 1, k = n-l, \\ 0, k \neq n-l. \end{cases}$$

Теорема 2. Каждый стационарный ДВ-фильтр Φ имеет вид $\Phi x = h * x$, где $h = \Phi \delta_0 - mak$ называемая импульсная характеристика фильтра Φ .

Пример 3. Известно, что стационарный ДВ-фильтр Φ сигнал на входе δ_0 преобразует в сигнал на выходе $h(n) = (0,1)^n u(n)$. Каков будет сигнал на выходе, если сигнал на входе есть $x(n) = (0,2)^n u(n)$? Решение. В силу теоремы 2 $\Phi x = h * x$. Поскольку u(n-k) = 0 при k > n, то по определению 3 и формуле суммы членов геометрической прогресии сигнал на выходе есть

$$h * x(n) := \sum_{k \in \mathbb{Z}} h(k)x(n-k) = \sum_{k=0}^{n} (0,1)^{k} (0,2)^{n-k} = (0,2)^{n} \sum_{k=0}^{n} 2^{-k} = \frac{2^{n+1} - 1}{10^{n}}.$$

ЗАДАЧИ

- 1. Известно, что стационарный ДВ-фильтр Φ сигнал на входе $x_0(n) = u(n) u(n-2)$ преобразует в сигнал на выходе $y_0(n) = 3r(n+4) 3r(n)$. Каков будет сигнал на выходе, если сигнал на входе есть
 - a) $x_a(n) = 3u(n-1) 3u(n-3);$
 - b) $x_b(n) = u(n) u(n-1) u(n-2) + u(n-3);$
 - c) $x_c(n) = u(n) u(n-4)$?

Указание. См. пример 1.

- 2. Вычислить свертку y = h * x, если
- a) $x(n) = \delta_0(n) \delta_0(n-3), h(n) = 3\delta_0(n+1) + \delta_0(n-3);$
- b) $x(n) = a^n u(n), h(n) = b^n u(n) (|a| < 1, |b| < 1);$
- c) $x(n) = \delta_1(n) \delta_0(n-3), h(n) = 4u(3-n).$

Указание. См. пример 2.

- 3. Известно, что стационарный ДВ-фильтр Φ сигнал на входе δ_0 преобразует в сигнал на выходе $h(n) = (0,5)^n u(n)$. Каков будет сигнал на выходе, если сигнал на входе есть
 - a) $\delta_0(n+4) 3\delta_0(n-3)$;
 - b) $2^{-n}u(n)$;
 - c) $3^{-n}u(5-n)$?

Указание. См. пример 3.